
Specialized Numerical Methods
for Transport Phenomena

The deal.II library
Introduction to triangulations

Bruno Blais and Laura Prieto Saavedra

Associate Professor
Department of Chemical Engineering

Polytechnique Montréal

October 22, 2025



Outline

deal.II library

Triangulations: Why and what?

Talk is cheap, where’s the code? Generating a Triangulation

Talk is cheap, where’s the code? Iterating over cells

Talk is cheap, where’s the code? Outputting a Triangulation

Conclusion

GCH8108E Intro 2 / 35



Outline

deal.II library

Triangulations: Why and what?

Talk is cheap, where’s the code? Generating a Triangulation

Talk is cheap, where’s the code? Iterating over cells

Talk is cheap, where’s the code? Outputting a Triangulation

Conclusion

GCH8108E Intro 3 / 35



deal.II

What it is
A C++ software library supporting the creation of finite element codes
and an open community of users and developers.

Mission
To provide well-documented tools to build finite element codes for a broad
variety of PDEs, from laptops to supercomputers.

Vision
To create an open, inclusive, participatory community providing users and
developers with a state-of-the-art, comprehensive software library that
constitutes the go-to solution for all finite element problems.

GCH8108E Intro 4 / 35



deal.II: Concretely?
What it is
Provides everything required to solve transport phenomena using FEM:
• Mesh management (Triangulation)
• Tools to assemble FEM equations
• HPC-ready sparse linear algebra
• Mesh adaptation
• Post-processing support (vtu outputs)

What it is not
deal.II is not a solver. It is a toolbox to build your own highly efficient
FEM solver for the physics of your choice.
Challenges or opportunity?
This is challenging because it requires you to know sufficient FEM to
program your solver. This is filled with opportunities because it gives you
absolute control over it.

GCH8108E Intro 5 / 35



Some numbers

Community
• ≈ 16 principal developers
• >1000 contributors
• Developed by research groups in the USA, Germany, Italy, Sweden

and Canada

Some numbers
• 1.5M lines of C++
• >1000 page of documentation
• 90 tutorial programs (our group has made step-68 and step-70)
• 12000 unit tests
• Demonstrated scalability up to 300 000 cores

GCH8108E Intro 6 / 35



A PhD project

Created in the late 1990s
deal.II was created by Wolfgang Bangerth and Guido Kanschat in the
late 90s. It was Wolfgang’s PhD thesis. It has been in active development
since then (5-10 Pull requests per day, 365 days a year). Won the
prestigious Jon A Wilkinson prize in 2007 for best scientific library.

Industrial usages
deal.II is used in over 10 large-scale open-source projects to solve
problems related to geodynamics (Aspect), fluid mechanics in chemical
processes (Lethe), biomechanics (LifeX), etc. This is just the tip of the
iceberg (Canadian research lab use it for wood drying simulations, etc.).

GCH8108E Intro 7 / 35



Open science

deal.II is openscience. Use this to
your advantage during the semester.
• ALL classes are documented here

https:
//www.dealii.org/current/
doxygen/deal.II/index.html

• There are over 80 examples. The
first 6 are helpful for this class.

• The community is mega chill
and inclusive.

GCH8108E Intro 8 / 35

https://www.dealii.org/current/doxygen/deal.II/index.html
https://www.dealii.org/current/doxygen/deal.II/index.html
https://www.dealii.org/current/doxygen/deal.II/index.html


Outline

deal.II library

Triangulations: Why and what?

Talk is cheap, where’s the code? Generating a Triangulation

Talk is cheap, where’s the code? Iterating over cells

Talk is cheap, where’s the code? Outputting a Triangulation

Conclusion

GCH8108E Intro 9 / 35



A domain and its boundaries

The 2D heat transfer equation:

∂2T

∂x2
+

∂2T

∂y2
= 0 (1)

describes temperature in space T (x, y). To solve this equation we need:
• To define a domain
• To define its boundaries

GCH8108E Intro 10 / 35



The domain
The domain is the space in which we wish to describe temperature (or fluid
velocity, etc.). It may be simple or highly complex. It defines the limits of
the independent coordinates of the PDE (e.g. x, y). In this class, we note
the domain Ω, with Ω ∈ IRd, where d is the number of spatial dimension
(1, 2, 3). The contour of this domain is noted Γ with Γ ∈ IRd−1.

Ω Γ
Ω

Γ

Simple geometry and a more complex one in 2D

GCH8108E Intro 11 / 35



Dimensions and domain
• In 1D, Ω ∈ IR1 et Γ ∈ IR0. Here Γ = {0, L}.

x = 0 x = L

Ω

• In 2D, Ω ∈ IR2 and Γ ∈ IR1

Ω
Γ

• In 3D, Ω ∈ IR3 et Γ ∈ IR2. Here Γ = ∪6
i=1fi

f6

f3
f4

f2

f51

2

3

4
5

6
7

8

GCH8108E Intro 12 / 35



Triangulation of a domain

In the majority of numerical methods, to solve a PDE in a domain you
need to subdivide the domain into smaller entities which are called cells.
This set of cells will be what we call a triangulation or mesh.
In FEM, the cells will be the elements on which we will assemble simpler
equations. Intuitively, the more cells you will have, the more accurate a
solution will be.

What are the different cells we may encounter?

GCH8108E Intro 13 / 35



Triangulation of a domain

In the majority of numerical methods, to solve a PDE in a domain you
need to subdivide the domain into smaller entities which are called cells.
This set of cells will be what we call a triangulation or mesh.
In FEM, the cells will be the elements on which we will assemble simpler
equations. Intuitively, the more cells you will have, the more accurate a
solution will be.
What are the different cells we may encounter?

GCH8108E Intro 13 / 35



Cells in 1D to 3D
In 1D, a domain Ω will be a line. It is discretized using smaller segments:

In 2D, we can choose between triangles and quadrilaterals:

In 3D, the spectrum is larger. Ranges from tetrahedron to hexahedron:

GCH8108E Intro 14 / 35



Triangulations in 2D

In 2D we can generate Triangulations for geometries of arbitrary
complexity using triangulation algorithms (e.g. Delaunay, Frontal). This
generates an assembly of Triangles which covers the domain. We can also
use quadrilaterals, which are extremely useful in certain fields (boundary
layers in fluid mechanics, solid mechanics).

GCH8108E Intro 15 / 35



Triangulations in 3D - Tetrahedron

We often use tetrahedron to mesh an arbitrary volume. Tetrahedron are
the cell type for which it is always possible to automatically triangulate a
geometry.

GCH8108E Intro 16 / 35



Triangulations in 3D - Hexahedron

In FEM, hexahedral meshes always lead to better results. However, there
are no ways right now to automatically triangulate a 3D geometry using
hexahedra. This is an active research field.

GCH8108E Intro 17 / 35



In this class

Dimensions in this class
In this course, we will solve problems in 1D, 2D and 3D. We believe it is
important to understand some of the nuances associated with
dimensionality. In deal.II this will be easy because the dimension is
templated.

The art of triangulating
In this course, we will not program the generation of triangulation. We will
use either meshes created using GMSH, or we will use the deal.II
GridGenerator which already contains a ton of useful grids.

GridGenerator
Let’s take a look at the GridGenerator documentation together:
https://www.dealii.org/developer/doxygen/deal.II/
namespaceGridGenerator.html

GCH8108E Intro 18 / 35

https://www.dealii.org/developer/doxygen/deal.II/namespaceGridGenerator.html
https://www.dealii.org/developer/doxygen/deal.II/namespaceGridGenerator.html


Cells types used in this class

Supported
The deal.II framework was made around quadrilateral and hexahedral
cells (so-called tensor cells), but it now supports all aforementioned cell
types.

In this class
We will focus on line, quadrilateral and hexahedral unstructured meshes.
The main reason for this is that it is really easy to explain and understand
interpolation and quadrature in these type of cells. They are also
extremely accurate element types.

GCH8108E Intro 19 / 35



Outline

deal.II library

Triangulations: Why and what?

Talk is cheap, where’s the code? Generating a Triangulation

Talk is cheap, where’s the code? Iterating over cells

Talk is cheap, where’s the code? Outputting a Triangulation

Conclusion

GCH8108E Intro 20 / 35



The triangulation class

A triangulation is a collection of cells of dimension dim. If the cells are
2D, then they are made of lines, which are made of vertices, and so on and
so forth. To manage this information, deal.II provides the
Triangulation class.

^^ITriangulation<dim> tria;
^^ITriangulation<1> tria_1d;
^^ITriangulation<2> tria_2d;
^^ITriangulation<3> tria_3d;

GCH8108E Intro 21 / 35



Constructing a triangulation

By default, a simulation code will not know the geometry it will simulate
before starting. Consequently, this class is created empty and must be
filled with a triangulation. There are multiple ways to achieve this.
• Generating a triangulation in situ using GridGenerator
• Loading a mesh generated by another software using GridIn
• Making a copy of another existing Triangulation

Let’s look at the documentation together...

GCH8108E Intro 22 / 35



Generating with GridGenerator

Using the GridGenerator class, a triangulation can be filled with a simple
mesh of a geometry.

Triangulation<2> triangulation;
GridGenerator::hyper_cube(triangulation,0,1);
triangulation.refine_global(4);

This creates a square mesh in 2D. The bottom left corner is (0,0) and the
top right corner is (1,1). We then refine the mesh 4 times. Each
refinement subdivides the cell by two in each direction. We thus go from
1→4→16→64→256 cells when we do four refinements.

GCH8108E Intro 23 / 35



What does it look like?

GCH8108E Intro 24 / 35



Loading with GridIn

The GridIn functions enable you to read meshes from various format. Over
10 different formats are currently supported. Here is an example for a
GMSH file in 3D

Triangulation<3> triangulation; // the triangulation object
GridIn<3> gridin; // the GridIn object which will read
// We connect the reader to the triangulation
gridin.attach_triangulation(triangulation);
// We create a file stream to open the file
std::ifstream f("example.msh");
gridin.read_msh(f); // We read the file

GCH8108E Intro 25 / 35



Outline

deal.II library

Triangulations: Why and what?

Talk is cheap, where’s the code? Generating a Triangulation

Talk is cheap, where’s the code? Iterating over cells

Talk is cheap, where’s the code? Outputting a Triangulation

Conclusion

GCH8108E Intro 26 / 35



Iterating over cells

Now that we have a triangulation loaded, we will often want to iterate
over the content of the triangulations (the cells). Generally, you would
expect that we would traverse the structure using a simple for loop using a
structure like this:

^^I^^Ifor(int i = 0; i < n_cells; ++i)
^^I^^I{
^^I^^I^^ICell cell = tria.get_cell(i);
^^I^^I}

This is not what we do in practice.

GCH8108E Intro 27 / 35



Iterating over cells

There is no reason for cells to be stored sequentially. This is even more
important when you have mesh adaptation. What we do it use C++
range-based iterators.

// auto is a nice keyword that asks the compiler to
// automatically detect the type of variable at declaration
for (auto &cell : triangulation.active_cell_iterators())

{
^^I// cell is now a reference to a cell. We can now call the

functions associated with
^^I// cells using cell->function()
}

For more information on C++ iterators, please consult the following page:
https://learn.microsoft.com/en-us/cpp/standard-library/
iterators?view=msvc-170

GCH8108E Intro 28 / 35

https://learn.microsoft.com/en-us/cpp/standard-library/iterators?view=msvc-170
https://learn.microsoft.com/en-us/cpp/standard-library/iterators?view=msvc-170


Refinement

Cells in deal.II have many capabilities. You can get their vertices, their
barycenter, their status, etc.
One attractive feature is that you can refine and coarse cells as you wish.
This enables you to dynamically refine a mesh. We will explain in the
following weeks what is the root of this capability.

GCH8108E Intro 29 / 35



Example
This example generates the mesh of a circle and refines it if the cells are at
the boundary.

Triangulation<2> triangulation;
const Point<2> center(1, 0);
const double radius = 0.5;
GridGenerator::hyper_ball(triangulation, center, radius);
for (unsigned int step = 0; step < 5; ++step)
{
^^Ifor (auto &cell : triangulation.active_cell_iterators())
^^I{
^^I^^Iif (cell->at_boundary())
^^I^^Icell->set_refine_flag();
^^I}
^^Itriangulation.execute_coarsening_and_refinement();
}
std::ofstream out("circle-grid.svg");
GridOut grid_out;
grid_out.write_svg(triangulation, out);^^I

GCH8108E Intro 30 / 35



Example: Result

GCH8108E Intro 31 / 35



Outline

deal.II library

Triangulations: Why and what?

Talk is cheap, where’s the code? Generating a Triangulation

Talk is cheap, where’s the code? Iterating over cells

Talk is cheap, where’s the code? Outputting a Triangulation

Conclusion

GCH8108E Intro 32 / 35



Outputting the triangulation

Writing a Triangulation to a raw text file would not be a complicated
endeavour, but software such as Paraview do not support raw text file.
deal.II provides the GridOut interface to output triangulation to a large
array of mesh formats.

// Open a stream to write a file
std::ofstream out("grid-2.vtk");
// Create the grid output object
GridOut grid_out;
// Write the output grid
grid_out.write_vtu(triangulation, out);

GCH8108E Intro 33 / 35



Outline

deal.II library

Triangulations: Why and what?

Talk is cheap, where’s the code? Generating a Triangulation

Talk is cheap, where’s the code? Iterating over cells

Talk is cheap, where’s the code? Outputting a Triangulation

Conclusion

GCH8108E Intro 34 / 35



Conclusion

• Finite elements (and FVM) simulations require a Triangulation of a
domain.

• This notion is well represented using OO programming.
• We have seen how to load a triangulation, iterate over its cell,

manipulate the cells and output the resulting Triangulation.
• The first part of HW2 will enable you to learn more about this.
• Looping over cells and interacting with them will be dimension

independent...

GCH8108E Intro 35 / 35


	deal.II library
	Triangulations: Why and what?
	Talk is cheap, where's the code? Generating a Triangulation
	Talk is cheap, where's the code? Iterating over cells
	Talk is cheap, where's the code? Outputting a Triangulation
	Conclusion

