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Interpolation

Let’s make a recap of what we have seen thus far:
• Triangulating a domain Ω into smaller elements (cells)
• Integrating over a domain by integrating over cells

Interpolation
Interpolation defines the basis in which we will find our solution. Formally,
from a function f(x) known at n+ 1 points of the form (xi, f(xi)) we will
construct an approximation f(x) ∀x ∈ [min(xi),max(xi)]. The points xi
are the collocation (or interpolation) points.
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Lagrange Polynomial

Lagrange polynomial are a common way to define a polynomial
interpolation. Given (n+ 1) points (xi, f(xi)) for i = 0, 1, · · · , n, we
suppose that we are able to construct (n+ 1) polynomials ϕi(x) of degree
n which satisfy:

Li(xj) =

{
1, j = i

0, j ̸= i
(1)

Using these functions and the collocation points, we define the Lagrange
polynomial:

L(x) =

n∑
i=0

f(xi)Li(x)

Let’s construct L in the case where we have 2, 3 and n+ 1 points.
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Degree 1

The polynomials Li(x)
are:

L0(x) =
x− x1
x0 − x1

L1(x) =
x− x0
x1 − x0
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Degree 1
The interpolation polynomial is:

L(x) = f(x0)L0(x) + f(x1)L1(x)

L(x) = f(x0)
x− x1
x0 − x1

+ f(x1)
x− x0
x1 − x0
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Degree 2

The polynomials Li(x)
are:

L0(x) =
(x− x1) (x− x2)

(x0 − x1) (x0 − x2)

L1(x) =
(x− x0) (x− x2)

(x1 − x0) (x1 − x2)

L2(x) =
(x− x0) (x− x1)

(x2 − x0) (x2 − x1)
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Degree 2
The interpolation polynomial is:

L(x) = f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x)
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Generalization

The polynomials Li(x) are:

L0(x) =
(x− x1) (x− x2) · · · (x− xn)

(x0 − x1) (x0 − x2) · · · (x0 − xn)

L1(x) =
(x− x0) (x− x2) · · · (x− xn)

(x1 − x0) (x1 − x2) · · · (x1 − xn)

Li(x) =
(x− x0) · · · (x− xi−1) (x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1) (xi − xi+1) · · · (xi − xn)
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Using 5 points

We have 5 polynomials
Li(x):

L0(x)

L1(x)
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Example with 5 points
For fairly regular data like this, high degree interpolation performs visually
well.
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Runge Phenomenon
Interpolation with high degree polynomials using regularly spaced points
can lead to large interpolation errors near the edges of the interval. This
phenomenon is called the Runge phenomenon.
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Runge Phenomenon
Using an alternative spacing of the points (e.g. Chebyshev’s or Lobatto’s)
can mitigate this phenomena.
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Continuous piecewise polynomials

Motivation
Lagrange polynomials allow us to define an interpolation polynomial using
collocation points. In the end, we wish to define one interpolation
polynomial per cell.

Continuous piecewise polynomials
Continuous piecewise Lagrange polynomials allow us to define a
polynomial space for the union of all elements. The idea is relatively
simple: for every cell, we will define a Lagrange polynomial using
collocation points within that cell.
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Notation

Let Ω = [x0, xn] be an interval partitioned by n+ 1 points {xi}ni=0. We
define the elements Ωh = Ω1 ∪ Ω2 ∪ ... ∪ Ωn such that:

Ωh : x0 < x1 < x2 < ... < xn−1 < xn

With for example Ωi=2 = [x1, x2] and h2 = x2 − x1. We define the space
of piecewise continuous linear functions Vh in the triangulation Ωh. In this
space, the interpolation of any function f(x) can be defined by the linear
combination of hat functions {φi(x)}ni=0 and coefficients {f(xi)}ni=0
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Degree 1

fp(x) =

n∑
i=0

f(xi)φi(x)

φi =


(x− xi−1)/hi, if x ∈ Ωi

(xi+1 − x) /hi+1, if x ∈ Ωi+1

0, otherwise
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Properties

• φi is 1 at node i.
• φi is non-zero only on the elements touching the node i.
• φi is null at all the other nodes of the mesh.
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Generalization of the degree

For each interval Ωi consisting of (p+ 1) points (where p is the degree of
the interpolation), we construct a Lagrange polynomial.

Number of points used
• Degree 1 (p = 1) 2 points per interval
• Degree 2 (p = 2) 3 points per interval
• Degree 3 (p = 3) 4 points per interval
• Etc
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In practice

Coordinates
Thus far, we have always defined our polynomials using the real
coordinates x. In practice, this is not what is done.

• Requires redefining polynomial for every cell
• Difficult to apply in 2D and 3D

Reference element
Instead, we define the Lagrange polynomial once within the reference
element [-1,1] and we will transform each element Ωi to the reference
element using a change of variables.
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Q1 element

Q1 elements use linear in-
terpolation within the ele-
ment. Thus we have two
Lagrange polynomials:

L0 =
1

2
(1− ξ)

L1 =
1

2
(1 + ξ)
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Changing to the reference element

Once we have defined the Lagrange polynomial within the reference
element,

L0 =
1

2
(1− ξ)

L1 =
1

2
(1 + ξ)

We only need to transform from the real position to the reference position
by defining ξ(x):

ξ =
x− x0
x0 − x1
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Cells in 1D to 3D
In 1D, a domain Ω will be a line. It is discretized using smaller segments:

In 2D, we can choose between triangles and quadrilaterals:

In 3D, the spectrum is larger. Ranges from tetrahedron to hexahedron:
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2D and 3D
In this class, we will mainly work using tensor elements (lines,
quadrilaterals and hexahedra). For these elements, defining the 2D and 3D
Lagrange polynomial is direct by using tensor products. We define a set of
Lagrange polynomial per coordinate:
• Along the ξ coordinate:

L0,ξ =
1

2
(1− ξ)

L1,ξ =
1

2
(1 + ξ)

• Along the η coordinate:

L0,η =
1

2
(1− η)

L1,η =
1

2
(1 + η)
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Tensor product

L0,ξ =
1

2
(1− ξ)

L1,ξ =
1

2
(1 + ξ)

L0,η =
1

2
(1− η)

L1,η =
1

2
(1 + η)

The 2D interpolation polynomials are :

Lk (ξ, η) = Li,ξLj,η

with k = i+ 2j.
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Result

L0 (ξ, η) = L0,ξL0,η =
1

2
(1− ξ)

1

2
(1− η)

L1 (ξ, η) = L1,ξL0,η =
1

2
(1 + ξ)

1

2
(1− η)

L2 (ξ, η) = L0,ξL1,η =
1

2
(1− ξ)

1

2
(1 + η)

L3 (ξ, η) = L1,ξL1,η =
1

2
(1 + ξ)

1

2
(1 + η)

The same approach applies to 3D or to higher order. The only challenge is
to be able to go from the reference location to the physical location.

GCH8108E Interpolation in FEM 30 / 33



More than just interpolation

Although we have only used Lagrange polynomials to interpolate, we can
also extend this concept to calculate other values:
• Gradient
• Hessians
• etc.

This is achieved by deriving the interpolation!
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What does it look like?
deal.II provides abstraction for interpolating within cells using two
classes.

^^IFE_Q<2> fe(1);
^^IQGauss<2> quadrature_formula(2);
^^IFEValues<2> fe_values(fe, quadrature_formula, update_values |

update_JxW_values | update_gradients);
^^Iconst unsigned int n_q_points = fe_values.n_quadrature_points;
^^I
^^Ifor (auto cell: triangulation.active_cell_iterators())
^^I{
^^I^^Ife_values.reinit(cell);
^^I}

The FE_Q class generates the finite element interpolation support.
The FEValues object takes care of coupling the interpolation object (FE)
and the quadratures. It automatically calculates everything related to the
geometrical transformation.
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