Specialized Numerical Methods
for Transport Phenomena

Integrating over cells

Bruno Blais and Laura Prieto Saavedra

Department of Chemical Engineering
Polytechnique Montréal

October 22, 2025

Outline

Motivation

Gauss-Legendre quadratures in 1D

Extension to 2D and 3D

Using quadratures in deal.II

Conclusion

GCHB8108E Integration 2/41

Outline

Motivation

GCHB8108E Integration 3/41

Finite element method

As we will see in the following weeks, the finite element method will
require us to carry out integral over the domains (1D, 2D or 3D):

/ pip A0 = / £:QdQ
[9] Q

This will enable us to solve equations. Don’t worry, we will see in the
following weeks what this is and where it comes from. For now, we need
to know we will be integrating over domain 2. We saw in the previous
lectures that we divide this domain into cells. It is over the cells that we
will integrate.

GCHB8108E Integration 4 /41

Numerical integration

For now, let's simplify our problem to this:

| a1

where we wish to calculate I. We triangulate the domain, so I is
approximated by:

1= /Q =3 /Q fa)a,

where €). are the cells. The integral over the domain, is the sum of the
integrals over the cells.

GCHB8108E Integration 5 /41

Integrating over a cell

Integration methods

In your curriculum you have seen ways to integrate numerically:
® Mid-point rule
e Trapezoidal rule
e Simpson’s 1/3 rule

Gauss quadratures

GCHB8108E Integration 6 /41

Integrating over a cell

Integration methods

In your curriculum you have seen ways to integrate numerically:
® Mid-point rule
e Trapezoidal rule

e Simpson’s 1/3 rule

Gauss quadratures

In FEM (and FVM) what we integrate are polynomials in the end. So we
will use Gauss quadratures.

GCHB8108E Integration 6 /41

Outline

Gauss-Legendre quadratures in 1D

GCHB8108E Integration 7 /41

Gauss quadratures: Concept

A review

You should have learnt about Gauss quadratures at one point in your
curriculum if you took an intro to scientific computing class. The only new
thing we will learn here is how they are generalized to 2D and 3D
integration.

GCHB8108E Integration 8 /41

R A,

Gauss-Legendre Quadratures in 1D o 87«=

Gauss-Legendre quadratures are a different integration technique than
interval decomposition strategies (e.g. trapezoids). For a given integral:

/abf(:n)dx

They aim at choosing the optimal points x; where the function f(x) is
evaluated.

GCHB8108E Integration 9 /41

. e

Gauss-Legendre Quadratures in 1D o 87«=

Gauss-Legendre quadratures are a different integration technique than
interval decomposition strategies (e.g. trapezoids). For a given integral:

/abf(ac)dx

They aim at choosing the optimal points x; where the function f(x) is
evaluated.

This concept is critical to decrease the computational cost of the
FEM.

GCHB8108E Integration 9 /41

Gauss quadratures replace the integral of a function f(t) by a sum of this
function evaluated at points ¢; multiplied by weights w;:

1 n
/ 0t~ 3w ()
- =1

The n integration weights w; and the points ¢; are chose to integrate
exactly a polynomial of order 2n — 1.

This integral is between —1 and 1, what will happen if we wish to
integrate over other intervals?

GCHB8108E Integration 10 / 41

Changing the interval

An integral I:
b
I—/ f(z)dx

Can be rewritten, after a change of coordinates, in the following form:

I:/_llg(t)dt:/llf<(b—a)t2+(a+b)> b;adt

So we can change the bounds of any integral so that they are —1 and 1.

GCHB8108E Integration 11 /41

Example: changing the bounds

Let be the following integral:

4
I:/xdx
0

Perform the change of bounds to obtain an integral from —1 to 1 and
compute the integral

Blackboard

GCHB8108E Integration 12 / 41

Gauss Quadratures

We have just seen that any definite integral can be reduced to an integral
whose bounds are in the form of an integral whose bounds are —1 and 1.
The only thing missing is the choice of the points ¢; and the weights w; of
the Gauss quadrature

1 n
/ 0t~ Y wf (1)
- =1

The t; and w;, of which there are n, will be chosen so as to integrate
exactly one polynomial of degree 2n — 1 or less.

GCHB8108E Integration 13 /41

One-point quadrature

The one point quadrature is constructed to integrate exactly a polynomial
of degree 0 or degree 1.

1
/1 1dt = wlf(tl) = w1

1
/ tdt = wlf(tl) = w1t1
-1

What should the values of ¢t; and w; be?

Blackboard

GCH8108E Integration 14 / 41

Derivation of the two-point quadratur’g@f&

The two quadrature integrates exactly polynomials of degree 0, 1, 2 or 3.
2

/1 1dt = szf(tz) = w1 + Wy

-1 i=1

/ tdt = Z wlf = w1t + wats
/ 2dt = Z wif(t;) = wit? + wot?
/ 3t = Z wi f (t;) = wits + wot

Let's define the system of equations to determine the values of t1, t9, wy

| Blackboard

GCHB8108E Integration 15 / 41

Quadrature formulas

With this procedure, we construct quadrature formulas.

Integration points ¢; Weights w; Degree
1 tl =0 w1 = 2 1
t1 = — 1/3 wy =
2 3
tz = 1/3 Wy = 1
3 ta =0 wy = 8/9 5
t3 = /15/5 w3 =5/9
t1=—(V/525+70v30) /35
' /3 oy = (18 — v/30) /36
A to = — (/525 — 704/30 /35 Wy = (18 + /30) /36 .
t5 = (v/525 — 70v/30) /35 | ws = (18 +v/30) /36
wyg = (18 —/30) /36
ts = (V525 +70v/30) /35 | ()/

GCHB8108E Integration 16 / 41

Example 1

Calculate the following integral I using a one point quadrature:

I = /01 edx
Blackboard

GCHB8108E Integration 17 / 41

Outline

Extension to 2D and 3D

GCHB8108E Integration 18 / 41

2 —
4N

Extending to multiple dimensions « « " 87+=

Extending Gauss quadratures to 2D and 3D is easy in the case of tensor

elements (quads and hexahedra).
The quadrature formula in 2D will be the tensor (dyadic) product of the

quadrature formula in 1D for x and 1D for y.

GCHB8108E Integration 19 / 41

Assuming we have a two point quadrature along both axis. For z we have
rg and 71 such that:

And for y we have sy and s

1 1
30:—%7 Slzﬁ

The resulting points will be the tensor product between s and r: (7, s;)

GCHB8108E Integration 20 / 41

po = (o, 50) =

p2 = (19,51) =

(
SR E
(-7 =)

1 1

V3 V3
We had two points per dimensions, thus we obtain 4 points in 2D and 8
points in 3D.

p3 = (r1,s1) = <

GCHB8108E Integration 21 /41

A real mesh

The unit cell

All cells can be mapped to a unit cell. To achieve this easily, we need to
use interpolation, which we will see extensively next week. Assuming we
have a 2D Lagrange polynomial on my unit square, with four Lagrange

polynomials:
po=3(1-6(1-n)
=3 (146 (1-7)
= (1= +)
ey = (146 +1)

where £ and n are the independent coordinates on the unit square. The
resulting weights are also the products of the original weight associated
with each point in a coordinate.

GCHB8108E Integration 23 /41

The unit cell

We can express the position in the unit cell using the location of the four
vertices of the original quadrangle:

4 4
T =(z,y) = @iwi= Y @i(riv)
i=0 i=0

This defines a transformation from x to £ for which the Jacobian is:

\7(5777) = [35/ aZ]
g Iy

You may remember these notions from your Calculus class (Calcul 2 at
Poly).

GCH8108E Integration 24 / 41

Redefining the integral

Consequently, the following integral

7

becomes

n=1 &=1
[/n /5 FEm) 1€)] dédn

=1

Which, using quadrature formula becomes:

3
I~ waf (g,m9) 1&g, mq) (1)
q=0

This works for any quadrilateral, even if the a = a(y) and b = b(y).

GCHB8108E Integration 25 /41

Outline

Using quadratures in deal.II

GCHB8108E Integration 26 / 41

The code

deal.II provides nice abstraction for integration. The following code
calculates the area of a 2D triangulation using quadratures.

FE_Q<2> fe(1);

QGauss<2> quadrature_formula(2);

FEValues<2> fe_values(fe, quadrature_formula, update_values
update_JxW_values | update_quadrature_points);

const unsigned int n_q_points = fe_values.n_quadrature_points;
double integration_result=0;

for (auto cell: triangulation.active_cell_iterators())
{

~~Ife_values.reinit(cell);

“~Ifor (unsigned int q = 0; q < n_q_points; g++)

~1{

~~I""Iintegration_result += fe_values.JxW(q)

"I}

}

GCHB8108E Integration 27 /41

Explaining the code

Generate the Finite Element interpolation support (we will see more about
this next week). Here, 2 is the number of dimensions (2D) and the 1
implies first order.

FE_Q<2> fe(1);

Generate a Gauss quadrature in 2D. The quadrature uses 2 points per
dimension.

QGauss<2> quadrature_formula(2);

Thus, it will have 4 points in 2D.

GCHB8108E Integration 28 / 41

Explaining the code

The FEValues object takes care of coupling the interpolation object (FE)
and the quadratures. It automatically calculates everything related to the
geometrical transformation.

FEValues<2> fe_values(fe, quadrature_formula, update_values
update_JxW_values | update_quadrature_points);
-1

It's a complicated object and has many arguments. The first one is the
Finite Element object, then the quadrature object, then we specify what
we will update when we loop through cells. We will see this more in the
following weeks !

GCHB8108E Integration 29 / 41

Explaining the code

FEValues<2> fe_values(fe, quadrature_formula, update_values |
update_JxW_values | update_quadrature_points);
-1

From this object, we can gather the number of quadrature point. Here we
would have 4.

const unsigned int n_q_points = fe_values.n_quadrature_points;
I

GCHB8108E Integration 30 /41

Explaining the code

Finally, we carry out integration by looping over the cells and summing
over the quadrature points.

double integration_result=0;

for (auto cell: triangulation.active_cell_iterators())
{

“~Ife_values.reinit(cell);

“~“Ifor (unsigned int q = 0; q < n_qg_points; g++)

~~1{

“~“I""Iintegration_result += fe_values.JxW(q)

~°I}

}

-°I

The above code is mathematically equivalent to :

| / HanHdédnvaqu)l

GCH8108E Integration

Outline

Conclusion

GCHB8108E Integration 32 /41

Conclusion

Integration is fundamental to the Finite Element Method.

Quadratures are the efficient way to carry out this integration.
® \We have seen how they can be used in 1D, 2D and 3D.

We have also seen how deal.II manages to abstract their
complexity in any dimensions with just a few objects.

In the homework, you get to manipulate these objects.

Next week, they will be key to solving our first FEM problems.

GCHB8108E Integration 33 /41

Some things to clarify:

The Gauss quadrature requires:

e Certain number of integration points and weights in the unit
coordinates.

¢ Transformation between physical coordinates and unit coordinates: to
be able to move from any cell to the reference cell.

What are the equivalent of those in the code?

GCH8108E Integration 34 /41

Components in the code

When performing numerical integration in deal.II the main ingredients
are:

e A triangulation to perform integration in each of the cells:

Triangulation<2> tria;

® The quadrature formula with the points required in 1D:

QGauss<2> quadrature_formula(n_q_points);

® FEValues object that allows us to get the number of quadrature
points in the appropriate dimension, the weights and the Jacobian
information:

FEValues<2> fe_values(fe, quadrature_formula, update_values
| update_JxW_values | update_quadrature_points);

GCHB8108E Integration 35 /41

Is the FEValues object magic?

Let us look at the syntax:

~~"IFEValues<2> fe_values(fe, quadrature_formula, update_values |
update_JxW_values | update_quadrature_points);

Several questions arise:
¢ What is this weird fe object?

® Why does this object know how to transform from physical to
reference coordinates? Where are the lagrange polynomials that were
used to map the cells to unit cells?

® What are those weird flags?

To understand this better, let us look at the documentation...

GCHB8108E Integration 36 / 41

v

The FEValues constructor in deal, II{ e7+=

There are four available constructors for this class due to overloading:

Public Member Functions

ing, const
> &fe, const Quadrature< dim >
date_flags)

lues (const Mapping< dim, spacedim > &maf
ent< dim, spacedim > &fe, const hp
, const UpdateFlags update_flags)

, const
QCollection< dim

FEValues (const FiniteElement< dim, spacedim > &fe, const
Quadrature< dim > &guadrature, const UpdateFlags update_flags)

FEvalues (const FiniteElement< dim, spacedim > &fe, const
ction< dim > &quadrature, const UpdateFlags

Let us look at the third one, since it is the one we have been using so far...

GCHB8108E Integration

P

The third FEValues constructor in.deale™E

The documentation page shows the following:

* FEValues() ra/41

template<int dim, int spacedim = dim>
FEValues< dim, spacedim >::FEValues (const FiniteElement< dim, spacedim > & fe,

const Qu dim > & quadrature,

const

)

update_flags

Constructor. This constructor is equivalent to the other one except that it makes the object use a O, mapping (i.e., an object of type MappingQ(1))

implicitly.

As it can be seen we use a Q1 mapping, i.e., a polynomial mapping of

degree 1. These are the functions we saw last class.

Since there is another constructor, we can also specify it directly.

GCHB8108E Integration

38 / 41

Specifying a mapping:

The first constructor has this parameter:

* FEvalues() (w41

template<int dim, int spacedim = dim>

FEValues< dim, spacedim >::FEValues (const Ma j< dim, spacedim > & mapping,
const FiniteElement< dim, spacedim > & fe,
const Quadrature< dim > & quadrature,
const UpdateFlags update_flags

)

Constructor. Gets cell independent data from mapping and finite element objects, matching the quadrature rule and update flags.

How to use it in the example?

MappingQ<dim> mapping(1);

FEValues<2> fe_values(mapping, fe, quadrature_formula,
update_values | update_JxW_values |
update_quadrature_points) ;

This is equivalent to the previous call but giving an explicit mapping
parameter...

GCHB8108E Integration 39 /41

Do we always want mapping of de‘gyreé‘if’?’:

Increasing the order of the mapping
is useful when we have elements with
complex shapes (e.g. curved bound-
aries).

It will allow to have a more accurate
transformation from the physical co-
ordinates to the reference element im-
proving the precision of the solution.

In the homework we have simple meshes with no curvature. You can try to
increase the order and no improvement will be seen. Moreover, it requires
also to provide more information about how interior edges and faces of the
mesh should be curved.

GCH8108E Integration 40 / 41

o=

What about the other parameters? L=

® The FE_Q object is not used at all when only doing integration. It was
needed only for compilation since the FEValues requires it. Today we
will learn what is its role in FEM.

® The ingredients needed for quadrature are all in the quadrature
formula and the mapping. The FEValues is in charge of taking
information from both to provide the Jacobian and the weights for
each cell via JxW.

® The flags tell the FEValues what information is needed on each cell
when iterating over all of them.

GCH8108E Integration 41/ 41

	Motivation
	Gauss-Legendre quadratures in 1D
	Extension to 2D and 3D
	Using quadratures in deal.II
	Conclusion

