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Motivation
So far, we have only investigated steady-state Poisson problems such as
the heat transfer equation. In many situations, we are interested in solving
transient problems. For example, the transient heat equation:

ρCp
∂T

∂t
= k∇2T

with an initial condition describing T (x) and boundary conditions.
We have an additional term that we need to consider, which is the time
derivative.
There are two approaches we can consider:
• Interpolate in time using a Lagrange polynomial (space-time FEM)
• Use a finite difference approach. This is generally the approach we

take.
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Euler’s method

You most likely have already seen at some place during your curriculum
that one way to approximative time derivative is to use a finite difference
scheme. For example:

∂c

∂t
≈ ct+∆t − ct

∆t

is called Euler’s method.
We generally distinguish between two families of Euler’s method:

• Explicit: All terms at the right-hand-side are taken at time t

• Implicit: All terms at the right-hand side are taken at time t+∆t
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An example

Let’s consider the following system of ODEs:

dx

dt
= αx− βxy

dy

dt
= δxy − γy

Lets solve it using both implicit and explicit Euler
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In the context of FEM
Solving transient problems in FEM is done in the same exact fashion. Let’s
take our PDE:

ρCp
∂T

∂t
= k∇2T

We discretize the equation in time:

T t+∆t − T t

∆t
= α∇2T

where α = k/ρCp. Now let’s see what happens when we solve it using
explicit or implicit Euler.
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Weak form: Explicit Euler

The weak form we obtain is:∫
Ω

(
1

∆t
uT t+∆t

)
dΩ =

∫
Ω

(
1

∆t
uT t − α∇u∇T t

)
dΩ

And fully discretized it is:∑
j

T t+∆t
j

∫
Ω

(
1

∆t
ϕiϕj

)
dΩ =

∫
Ω

(
1

∆t
ϕiT

t − α∇ϕi∇T t

)
dΩ

Some conclusions:
• We still need to a solve a linear system, even if the scheme is explicit?
• There is a stability criterion.
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Weak form: Implicit Euler

The weak form we obtain is:∫
Ω

(
1

∆t
uT t+∆t + α∇u∇T t+∆t

)
dΩ =

∫
Ω

(
1

∆t
uT t

)
dΩ

And fully discretized it is:∑
j

T t+∆t
j

∫
Ω

(
1

∆t
ϕiϕj + α∇ϕi∇ϕj

)
dΩ =

∫
Ω

(
1

∆t
ϕiT

t

)
dΩ

We recognize two key blocks that have a specific name:
• ϕiϕj : It is called the mass matrix. It models the inertia of a system.
• ∇ϕi∇ϕj : It is called the stiffness matrix.

These names come from solid mechanics.
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Alternatives

We have seen only one approach (Euler’s method) to treat the transient
terms. We can do the same thing with all sort of time-stepping schemes:
• Backward finite difference (BDF) from order 1 to order n
• Runge-Kutta methods (RK, IRK, DIRK, SDIRK, etc.)
• And so on and so forth...

This is an active research field. The same idea always applies, but the
devil is in the details (as always).
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Motivation
The advection-diffusion equation arises in several physical phenomena and
it is defined for a scalar c follows:

v · ∇c−D∇2c = 0

where v is a velocity vector. In 1D this equation can be written as follows:

vx
dc

dx
−D

d2c

dx2
= 0

Let us check the dimensions of this equation and find its dimensionless
form.
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Consequences

v̄ · ∇c︸ ︷︷ ︸
Advection

− 1

Pe
∇2c︸︷︷︸

Diffusion

= 0

The behavior of the solution depends on the ratio between the two
mechanisms and it is represented by the Peclet number Pe = V L

D .

Two limits occur:
• Diffusion dominates when Pe ≤ 1

• Advection dominates when Pe ≫ 1
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Pe = 1 - Strong diffusion
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Pe = 1 - Strong diffusion
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Pe = 100 - Balanced
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Pe = 100 - Balanced
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Pe = 104 - Advection dominates
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Pe = 104 - Advection dominates
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Toy problem 1 (TP1)

Solve the following equation:

v
∂c

∂x
−D

∂2c

∂x2
= 0

on domain Ω = [0, L] with the following boundary conditions:

c(x = 0) = 0

c(x = L) = 1

and v = 1.
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TP1: Dimensionless

We first write it in its dimensionless form in terms of the Pe number:

∂c

∂x̄
− 1

Pe

∂2c

∂x̄2
= 0

Then, we find the boundary conditions for the new variable x̄:

c(x̄ = 0) = 0 c(x̄ = 1) = 1

There is an analytical solution for this problem:

c =
exp(Pe x̄)− 1

exp(Pe)− 1
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Toy problem 2 (TP2)

We want to solve the same equation but with a right hand side and
different boundary conditions:

dc

dx̄
− 1

Pe

d2c

dx̄2
= 1

on a domain Ω = [0, 1] with v = 1 and c(0) = c(1) = 0.
The analytical solution for this problem is given as follows:

c = x− exp (−Pe(1− x))− exp (−Pe)

1− exp (−Pe)
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Finite element formulation

Let us establish the weak form of the problem with Dirichlet boundary
conditions:

v · ∇c− 1

Pe
∇2c = 0

Note that we do it for the dimensionless form and with tensor notation so
that it is valid for all dimensions.
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Solution

Weak form: ∫
Ω

uv · ∇c dΩ +

∫
Ω

1

Pe
∇u · ∇c dΩ = 0

Which from now on we will note:

(v · ∇c, u)Ω + (1/Pe∇c,∇u)Ω = 0

with c, u ∈ H1(Ω).
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TP2: Solution as function of Pe

dc

dx
− 1

Pe

d2c

dx2
= 1

On domain Ω = [0, 1]
with c(0) = c(1) = 0.
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TP2: Solution as function of refinement

Refining the mesh fixes
the issue. In this case,
for Pe = 100.
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Convergence?

102 103 104

h−1

10−5

10−4

10−3

10−2

10−1

100

101

‖e
‖ 2

‖eu‖2 Galerkin

‖eu‖2 = 1317.19h−2.00
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What is happening here?

A simple description
As Pe increases, we lose control of the gradients of c. For large values of
Pe we have thin regions (layers) in which the solution changes rapidly.
The Galerkin method has severe issues in handling this layers and tends to
generate oscillations which will propagate throughout the domain. Once
1
Pe becomes smaller than the mesh size, this issue occurs.

Mathematically

∥∥∥c− ch
∥∥∥
H1

≤
(
1 + C−2

p

)
(1 + Pe)Chh

with Cp and Ch constants. c is the analytical solution and ch is the
numerical solution.
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Idea

We will denote from now on D = 1
Pe . The issue we have is that when D is

too small:

(v · ∇c, u)Ω + (D∇c,∇u)Ω = 0

we observe oscillations in the solution. The natural solution is to add more
diffusion to the problem to stabilize the solution. We do so by adding k
diffusion as follows:

(v · ∇c, u)Ω + (D∇c,∇u)Ω + (k∇c,∇u)Ω = 0

This will fix our issue, because layers will be allowed to diffuse. However,
how do we choose k?
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Solution obtained
Adding k allows us to recover a smooth solution:
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Convergence
Choosing a finite value of k creates a variational inconsistency:

102 103 104

h−1

10−5

10−4
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‖e
‖ 2
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‖eu‖2 = 0.01h−0.00
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Convergence
A solution is to choose k such that it depends on the element size h. This
recovers a form of variational consistency, but lowers the order of the
underlying scheme.

102 103 104

h−1

10−5

10−4
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100
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‖e
‖ 2
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Partial conclusion

Adding artificial diffusion has the following consequences:
• Regularizes the solution to ensure that the gradients are bounded.
• Leads to a form of variational inconsistency (lowered order of

convergence).
• Adds significant diffusion in the cross-wind direction (will not show up

in 1D, but will in 2D and 3D) → not shown here .

We need a solution which adds diffusion in a more coherent way...
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Streamline artificial diffusion

A solution to mitigate this problem is to add artificial diffusion in a single
direction (the velocity direction).

v · ∇c−∇ · (DI · ∇c+ κ · ∇c) = 0

where κ is a diffusion tensor. What does it look like?
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Building it
Thus we obtain

v · ∇c−∇ ·
(
DI · ∇c+

κ

∥v∥2
v ⊗ v · ∇c

)
= 0

we use this to define:

τ =
κ

∥v∥2

Let’s now do the weak form and figure things out.
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Final form

After integrating by parts we obtain:

(v · ∇c, u)Ω + (D∇c,∇u)Ω + (τv · ∇c,v · ∇u)Ω = 0

The consequence of this is that now that artificial diffusion is only applied
in the direction of the velocity vector. This is the streamline artificial
diffusion method.
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TP2: Result
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No oscillations observed... what about convergence?
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TP1: Convergence
We obtain the expected order with Q1 elements:
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TP2: Convergence
We obtain the expected order with Q1 elements:
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TP1: High-order convergence
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Does not obtain the right order when using Q2 elements...
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Variational consistency

Consider again TP1:

v · ∇c−D∇2c = 0

For which the weak form is:

(v · ∇c, u)Ω + (D∇c,∇u)Ω = 0

and with streamline artificial diffusion:

(v · ∇c, u)Ω + (D∇c,∇u)Ω + (τv · ∇c,v · ∇u)Ω = 0

The main issue is that if (τv · ∇c,v · ∇u)Ω does not vanish variational
consistency is not recovered. So what happened when we moved from Q1
to Q2?
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Variational consistency
Consider a generalized form of TP2:

v · ∇c−D∇2c = f

For which the weak form is:

(v · ∇c, u)Ω + (D∇c,∇u)Ω − (f, u)Ω = 0

and with streamline artificial diffusion:

(v · ∇c, u)Ω + (D∇c,∇u)Ω − (f, u)Ω + (τv · ∇c,v · ∇u)Ω = 0

The same issue could also occur at Q1 if f is a non-trivial function... (I
thought it would actually occur in the present case, it did not.)
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Idea

The main idea behind SUPG (which is a brillant one) is to transform
streamline artificial diffusion into something that is variationally
consistent. This is achieved by using the residual of the equation.
Starting from our PDE:

v · ∇c−D∇2c = 1

We define the strong residual R(c) as:

R(c) = v · ∇c−D∇2c− 1

This will be used for our upwinding.
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Result

(v · ∇c, u)Ω+(D∇c,∇u)Ω − (1, u)Ω+

(τ(v · ∇c−D∇2c− 1),v · ∇u)Ω = 0

This is the Streamline-Upwind / Petrov-Galerkin (SUPG) method which
was first published by Brooks and Hughes in 1982. This was a revolution
in the world of the finite element method.
It is a very interesting approach because it is an upwinding method that
preserves the order of the underlying scheme and just adds the right about
of numerical diffusion.
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Results

It works... (luckily for
me heh?)
The solution appears
less continuous as
the Péclet number
increases. It has more
jagged edges. We will
understand why in
what follows...
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Influence of the mesh

Stabilization intro-
duces just enough
numerical diffusion
to ensure that the
solution is adequate.
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Convergence Q1
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Convergence Q2
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Interpretation

The Streamline Upwind Petrov-Galerkin method skews the test function of
the FEM scheme to be larger upwind then downwind by using the strong
form of the integral.
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Two important topics

Transient problems
Transient problems are critical in engineering. The FEM is quite able to
solve them easily. Extending a solver to solve a transient problem is
relatively straightforward, depending on the time-stepping scheme you use.

Transport problems
Transport problems are very subtle. Solving them with FEM is quite
challenging and the literature on stabilized method is very difficult to
understand. FEM works correctly for transport problems, but it is less
straightforward to implement than it is for the Finite Volume Method for
example. Hence the latter being more common in CFD. The literature on
this is huge! There are many alternatives such as Discontinuous Galerkin
methods.
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