
Specialized Numerical Methods
for Transport Phenomena

The finite element method:
Poisson problem in 2D and 3D

Bruno Blais and Laura Prieto Saavedra

Associate Professor
Department of Chemical Engineering

Polytechnique Montréal

October 22, 2025

Outline

Recapitulation

FEM: Weak form in 2D and 3D

Sparse linear algebra

Let’s talk code

GCH8108E Poisson problem in 2D and 3D 2 / 38

Outline

Recapitulation

FEM: Weak form in 2D and 3D

Sparse linear algebra

Let’s talk code

GCH8108E Poisson problem in 2D and 3D 3 / 38

The heat equation, a prototype PDE

We are interested in solving equations such as the heat equation on a Ω
domain whose contour is Γ:

∇2T = 0

GCH8108E Poisson problem in 2D and 3D 4 / 38

1D version of the problem
We began by solving the 1D heat equation, with Dirichlet boundary
conditions:

d2T

dx2
= 0

We multiplied by an a priori unknown test function u(x) and obtained:

d2T

dx2
u(x) = 0

This equation is integrated over the entire domain of interest and obtain
the form strong integral: ∫

Ω

d2T

dx2
u(x)dx = 0

GCH8108E Poisson problem in 2D and 3D 5 / 38

Continued
Integrating by parts, and imposing zero Dirichlet boundary conditions to
the test functions, we obtained:∫

Ω

dT

dx

du(x)

dx
dx = 0

Using interpolation to express temperature:∫
Ω

n∑
j=0

Tj
dφj

dx

du(x)

dx
dx = 0

Finally, we chose a Galerkin approach for u(x).
n∑

j=0

Tj

∫
Ω

dφj

dx

dφi

dx
= 0

GCH8108E Poisson problem in 2D and 3D 6 / 38

Last course

In the last course, we have seen how the Finite Element Method works and
we have used it to solve a 1D problem. Steps of the resolution:
• Define the triangulation and the elements (Ωh)
• Define the interpolation function (φi) et and their gradient (dφi

dx)
• Define the structure of the matrix
• Calculate the integral to calculate the matrix (ex.

∫
Ω1

dφ0

dx
dφ1

dx)
• Solve the linear system of equations to find the coefficients Tj

The temperature is now known everywhere because of the interpolation
support!

GCH8108E Poisson problem in 2D and 3D 7 / 38

What’s left?

Generalizing FEM to higher spatial dimension is doable:
• Interpolation over segments becomes interpolation over cells (2D or

3D)
• Integrals over segments become integrals over cells (2D or 3D)
• Our 1D weak form has to be a 2D or 3D weak form

Luckily for us, deal.II will abstract all these concepts. Programming 1D,
2D or 3D will be identical. Understanding it, however, will be more subtle.

GCH8108E Poisson problem in 2D and 3D 8 / 38

Outline

Recapitulation

FEM: Weak form in 2D and 3D

Sparse linear algebra

Let’s talk code

GCH8108E Poisson problem in 2D and 3D 9 / 38

The heat equation, a prototype PDE

Let’s go back to our heat equation on a Ω domain whose contour is Γ:

∇2T = 0

GCH8108E Poisson problem in 2D and 3D 10 / 38

Heat equation in 2D and 3D

∇2T = 0

In 2D is:

∂2T

∂x2
+

∂2T

∂y2
= 0

and in 3D:

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0

To be general, we will keep using tensor notation. This will make our
representation agnostic of dimension.

GCH8108E Poisson problem in 2D and 3D 11 / 38

Multiple dimensions

Let’s start from our equation in tensor form:

∇2T = 0

which is equivalent to:

∇ · (∇T) = 0

or, in Einstein notation:

∂i∂iT = 0

We will note x the position vector. Remember that ∇T is a vector in IRd

where d is the number of dimension in space.

GCH8108E Poisson problem in 2D and 3D 12 / 38

Strong form

∇ · (∇T) = 0

We multiply by a test function u(x)

u∇ · (∇T) = 0

We integrate over Ω ∫
Ω

u∇ · (∇T) dΩ = 0

We have to be careful, integrating over Ω has a different meaning now
since Ω is either a line, a surface or a volume.

GCH8108E Poisson problem in 2D and 3D 13 / 38

Green’s first identity

What is Green’s first identity?

∫∫∫
Ω

u∇ · (∇T) dΩ =

∫∫
Γ

u (∇T) · ndΓ−
∫∫∫
Ω

∇u · ∇TdΩ

with n the outward pointing unit normal vector.
Where does this come from? Let’s try to develop an understanding of it.

GCH8108E Poisson problem in 2D and 3D 14 / 38

Applying Green’s identity

∫∫∫
Ω

u∇ · (∇T) dΩ =

∫∫
Γ

u (∇T) · ndΓ−
∫∫∫
Ω

∇u · ∇TdΩ

Thus the problem we have to solve is:∫∫∫
Ω

∇u · ∇TdΩ−
∫∫
Γ

u (∇T) · ndΓ = 0

Now what do we do with this?

GCH8108E Poisson problem in 2D and 3D 15 / 38

Boundary term

−
∫∫
Γ

u (∇T) · ndΓ

This is our boundary term. It becomes zero for Dirichlet Boundary
conditions. If we have Neumann or Robin boundary conditions, this term
is replaced by the value of the flux.
For example, if −∇T · n = q∀(x, y) ∈ Γ, then :

−
∫∫
Γ

u (∇T) · ndΓ =

∫∫
Γ

uqdΓ

GCH8108E Poisson problem in 2D and 3D 16 / 38

Volumetric term

For now let’s assume we have Dirichlet Boundary conditions. The PDE we
are solving becomes: ∫∫∫

Ω

∇u · ∇TdΩ = 0

We will use the same approach. First, we replace T with its interpolation.∫∫∫
Ω

∇u ·
∑
j

Tj (∇ϕj) dΩ = 0

GCH8108E Poisson problem in 2D and 3D 17 / 38

Test function

∫∫∫
Ω

∇u ·
∑
j

Tj (∇ϕj) dΩ = 0

We decide to use a Galerkin method, so we choose u to be ϕi. We will
have as many equations as we have unknowns.∫∫∫

Ω

∇ϕi ·
∑
j

Tj (∇ϕj) dΩ = 0

We can rearrange this!∑
j

Tj

∫∫∫
Ω

∇ϕi · ∇ϕjdΩ = 0

GCH8108E Poisson problem in 2D and 3D 18 / 38

Integration and interpolation

The same rules we have seen apply for integrating and interpolating over
surface and volumes.
Integrals
Using tensor product, we can generalize our 1D integral into a 2D and 3D
integral respectively by carrying out a tensor product on each dimension.

Interpolation
Using tensor product, we can generalize our 1D Lagrange polynomials into
a 2D and 3D polynomials respectively by carrying out a tensor product on
each dimension.

GCH8108E Poisson problem in 2D and 3D 19 / 38

Some comments are necessary

Gradients are vectors
In 2D:

∇ϕi =

[
∂ϕi

∂x
∂ϕi

∂y

]
In 3D:

∇ϕi =


∂ϕi

∂x
∂ϕi

∂y
∂ϕi

∂z


deal.II will make our life much easier for this...

Integrals are now surface or volume integrals
We are still integrating over a triangulation, but now all cells are 2D or 3D
objects. Thus we need to use higher dimensionality quadratures.

GCH8108E Poisson problem in 2D and 3D 20 / 38

Gradients: how does it work exactly?

In our equations, we will need the gradients with respect to the physical
space, e.g. in 2D:

∇ϕi =

[
∂ϕi

∂x
∂ϕi

∂y

]
But our shape function are only defined in the reference space. How do we
go from one to the other?

GCH8108E Poisson problem in 2D and 3D 21 / 38

More comments!

∑
j

Tj

∫∫∫
Ω

∇ϕi · ∇ϕjdΩ = 0 (1)

This can be decomposed furthermore:∑
j

Tj

∑
e

∫∫∫
Ωe

∇ϕi · ∇ϕjdΩ = 0 (2)

in which Ωe are the elements (cells).
Which ϕi and ϕj are non-zero on Ωe?
There is an explicit answer to this question.

GCH8108E Poisson problem in 2D and 3D 22 / 38

What happens for a mesh?

Let us talk about the degrees of freedom and how they change the
matrix...

GCH8108E Poisson problem in 2D and 3D 23 / 38

More comments!

Which ϕi and ϕj are non-zero?
Only those for which their colocation point (support point) lie within or at
the edge of the cell.
• We know a priori which ϕi and ϕj interact with one another.
• Few of them actually interact...
• For an an unstructured mesh, nothing allows us to infer the

numbering. We need a structure to store this information. This is
called a connectivity table.

• The bigger the mesh, the more zeros we have... This is an issue we
will address in the following section.

GCH8108E Poisson problem in 2D and 3D 24 / 38

Outline

Recapitulation

FEM: Weak form in 2D and 3D

Sparse linear algebra

Let’s talk code

GCH8108E Poisson problem in 2D and 3D 25 / 38

Memory requirement

It will not be computationally tractable to store all of these zeros.
• ≈ 100 Q1 elements in 2D : (102 × 102) matrix, 104 doubles, 0.08MB
• ≈ 1000 Q1 elements in 2D : (103 × 103) matrix, 106 doubles, 8MB
• ≈ 104 Q1 elements in 2D : (104 × 104) matrix, 108 doubles, 800MB
• ≈ 106 Q1 elements in 2D : (106 × 106) matrix, 1012 doubles, 8000GB

How can we solve large problems then?
Avoid storing all the zeros! Use sparse matrices.

GCH8108E Poisson problem in 2D and 3D 26 / 38

Memory requirement

It will not be computationally tractable to store all of these zeros.
• ≈ 100 Q1 elements in 2D : (102 × 102) matrix, 104 doubles, 0.08MB
• ≈ 1000 Q1 elements in 2D : (103 × 103) matrix, 106 doubles, 8MB
• ≈ 104 Q1 elements in 2D : (104 × 104) matrix, 108 doubles, 800MB
• ≈ 106 Q1 elements in 2D : (106 × 106) matrix, 1012 doubles, 8000GB

How can we solve large problems then?
Avoid storing all the zeros! Use sparse matrices.

GCH8108E Poisson problem in 2D and 3D 26 / 38

Sparse matrices

We need to use matrices that only store the non-zero elements. This
requires two things:
• Knowing which elements of the matrix will be non-zero (a priori) to

allocate the necessary memory.
• A storage technique which is adequate for this.

GCH8108E Poisson problem in 2D and 3D 27 / 38

What do we store?

• We know a priori which row-columns will be non-zero.
• We can pre-emptively allocate just the right amount of memory

required for our sparse matrix. This pattern is called a sparsity
pattern.

• Establishing it is more of a technical issue than a scientific one.
Luckily for us, deal.II takes care of that for us.

GCH8108E Poisson problem in 2D and 3D 28 / 38

Storage techniques

There are multiple formats to store sparse matrices. Some are more
adequate to generate sparsity patterns, while other are better for solving
linear systems.
• Dictionary Of Keys (DOK). Similar to a python dictionary
• List of list
• Coordinate list
• Compressed Sparse Row (CSR) or Compressed Sparse Column (CSC)

Let us see an example of CSR storage...

Why do you think that this storage technique is suitable for us?

GCH8108E Poisson problem in 2D and 3D 29 / 38

Naive sparsity pattern

GCH8108E Poisson problem in 2D and 3D 30 / 38

Optimized sparsity pattern
Sparsity patterns can be renumbered to have a decreased bandwidth.

GCH8108E Poisson problem in 2D and 3D 31 / 38

Code: Sparsity pattern

// 1. Create matrix
SparseMatrix<double> system_matrix;
^^I
// 2. Create a dynamic pattern (cheap to alter but not efficient

computationally)
DynamicSparsityPattern dsp(dof_handler.n_dofs());

// Generate the sparsity pattern
DoFTools::make_sparsity_pattern(dof_handler, dsp);

// 3. Create a static sparsity pattern
SparsityPattern sparsity_pattern;
// Copy the dynamic one in the static one
sparsity_pattern.copy_from(dsp);

// 4. Use it to make our sparse matrix!
system_matrix.reinit(sparsity_pattern);

GCH8108E Poisson problem in 2D and 3D 32 / 38

Solving the linear system

The matrix and the vector we have built will allow us to obtain the
solution. However, we still need to solve a linear system of equations.
There are multiple ways to achieve this.
Direct solver
Solves the system exactly. Consumes a lot of memory and generally does
not scale well with the number of unknown or in parallel.

Iterative solvers
Solves the system iteratively. They are very sensitive to the type of
preconditioning, however, we need them if we want to solve very large
systems.

GCH8108E Poisson problem in 2D and 3D 33 / 38

Iterative solvers

Iterative solvers require two components:
The solver itself
Many types of solver that may exploit the structure of the matrix (e.g.,
Conjugate Gradient (CG)) or that may be general (e.g., GMRES).

Preconditioner
Alters the structure of the matrix to allow the iterative solver to reach a
solution faster. Again, there are many types of preconditioners (ILU,
AMG, GMG, etc.)

GCH8108E Poisson problem in 2D and 3D 34 / 38

Outline

Recapitulation

FEM: Weak form in 2D and 3D

Sparse linear algebra

Let’s talk code

GCH8108E Poisson problem in 2D and 3D 35 / 38

Looping over cells
QGauss<dim> quadrature_formula(fe.degree + 1);

FEValues<dim> fe_values(fe,^^Iquadrature_formula,
update_values | update_gradients |
update_quadrature_points | update_JxW_values);

const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
Vector<double> cell_rhs(dofs_per_cell);

std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
for (const auto &cell : dof_handler.active_cell_iterators())
{
^^Ife_values.reinit(cell);
^^Icell_matrix = 0;
^^Icell_rhs = 0;
^^I// The integration part
}

GCH8108E Poisson problem in 2D and 3D 36 / 38

Inside the loop
^^Ifor (const unsigned int q_index :

fe_values.quadrature_point_indices())
^^I{
^^I^^Ifor (const unsigned int i : fe_values.dof_indices())
^^I^^I{
^^I^^I^^Ifor (const unsigned int j : fe_values.dof_indices())
^^I^^I^^I{
^^I^^I^^I^^Icell_matrix(i, j) +=
^^I^^I^^I^^I(fe_values.shape_grad(i, q_index) * // grad phi_i(x_q)
^^I^^I^^I^^Ife_values.shape_grad(j, q_index) * // grad phi_j(x_q)
^^I^^I^^I^^Ife_values.JxW(q_index)); // dx
^^I^^I^^I}
^^I^^I^^I
^^I^^I^^Icell_rhs(i) += (fe_values.shape_value(i, q_index) * //

phi_i(x_q)
^^I^^I^^Iright_hand_side.value(x_q) * // f(x_q)
^^I^^I^^Ife_values.JxW(q_index)); // dx
^^I^^I}
^^I}
^^I

GCH8108E Poisson problem in 2D and 3D 37 / 38

Assembling inside the cell loop

^^Icell->get_dof_indices(local_dof_indices);
^^Ifor (const unsigned int i : fe_values.dof_indices())
^^I{
^^I^^Ifor (const unsigned int j : fe_values.dof_indices())
^^I^^Isystem_matrix.add(local_dof_indices[i],
^^I^^Ilocal_dof_indices[j],
^^I^^Icell_matrix(i, j));
^^I^^I
^^I^^Isystem_rhs(local_dof_indices[i]) += cell_rhs(i);
^^I}
^^I

GCH8108E Poisson problem in 2D and 3D 38 / 38

	Recapitulation
	FEM: Weak form in 2D and 3D
	Sparse linear algebra
	Let's talk code

