Specialized Numerical Methods
for Transport Phenomena

The finite element method:
Poisson problem in 2D and 3D

Bruno Blais and Laura Prieto Saavedra

Associate Professor
Department of Chemical Engineering
Polytechnique Montréal

October 22, 2025

Outline

Recapitulation

FEM: Weak form in 2D and 3D

Sparse linear algebra

Let's talk code

GCHB8108E Poisson problem in 2D and 3D 2/ 3

=]

Outline

Recapitulation

GCHB8108E Poisson problem in 2D and 3D 3/38

The heat equation, a prototype PDE "o

We are interested in solving equations such as the heat equation on a {2
domain whose contour is I':

V2T =0

GCHB8108E Poisson problem in 2D and 3D 4 /38

1D version of the problem

We began by solving the 1D heat equation, with Dirichlet boundary
conditions:

2T
—= =0
dz2

We multiplied by an a priori unknown test function u(x) and obtained:

d2T

This equation is integrated over the entire domain of interest and obtain

the form strong integral:
d?T

GCHB8108E Poisson problem in 2D and 3D 5/38

Continued

Integrating by parts, and imposing zero Dirichlet boundary conditions to
the test functions, we obtained:

dT du(x)
— de =0
/Q dz dz o

Using interpolation to express temperature:

de; du(x B
/ZT] dz d:c z=0

Finally, we chose a Galerkin approach for u(x).

Z / d@] d(pz o
dz dx

GCHB8108E Poisson problem in 2D and 3D 6 /38

Last course

In the last course, we have seen how the Finite Element Method works and
we have used it to solve a 1D problem. Steps of the resolution:

Define the triangulation and the elements (£25)

dei
dx

)

Define the interpolation function (¢;) et and their gradient (

Define the structure of the matrix

. . dgo de
Calculate the integral to calculate the matrix (ex. [, <& <&h)

Solve the linear system of equations to find the coefficients T}

The temperature is now known everywhere because of the interpolation
support!

GCHB8108E Poisson problem in 2D and 3D 7/38

What's left?

Generalizing FEM to higher spatial dimension is doable:

* Interpolation over segments becomes interpolation over cells (2D or
3D)

* Integrals over segments become integrals over cells (2D or 3D)
® Qur 1D weak form has to be a 2D or 3D weak form

Luckily for us, deal.II will abstract all these concepts. Programming 1D,
2D or 3D will be identical. Understanding it, however, will be more subtle.

GCHB8108E Poisson problem in 2D and 3D 8 /38

Outline

FEM: Weak form in 2D and 3D

GCHB8108E Poisson problem in 2D and 3D 9/38

The heat equation, a prototype PDE "o

Let's go back to our heat equation on a {2 domain whose contour is I':

V2T =0

GCHB8108E Poisson problem in 2D and 3D 10 / 38

Heat equation in 2D and 3D

V2T =0
In 2D is:
0T 0°T
o4 2
0x? Oy?
and in 3D:

O°T N 9*’T N T _
ox2 = oy? 022

To be general, we will keep using tensor notation. This will make our
representation agnostic of dimension.

GCHB8108E Poisson problem in 2D and 3D 11 /38

Multiple dimensions

Let's start from our equation in tensor form:

VT =0
which is equivalent to:
V- (VT)=0
or, in Einstein notation:
0;0,T =0

We will note @ the position vector. Remember that V7T is a vector in IR?
where d is the number of dimension in space.

GCHB8108E Poisson problem in 2D and 3D 12 / 38

Strong form

V- (VT) =0
We multiply by a test function u(x)
uV - (VT)=0

We integrate over (2

/uV«(VT)dQ:O
Q

We have to be careful, integrating over €2 has a different meaning now
since () is either a line, a surface or a volume.

GCHB8108E Poisson problem in 2D and 3D 13 /38

Green’s first identity

What is Green's first identity?

/Q//UV.(VT)dQ:/F/u(VT).ndP_/Q/ Tu. UTdO

with n the outward pointing unit normal vector.
Where does this come from? Let's try to develop an understanding of it.

GCHB8108E Poisson problem in 2D and 3D 14 / 38

Applying Green'’s identity

/Q//W'(VT)dQ_/F/u(VT)-ndF—/Q/ Vu - VTdS

Thus the problem we have to solve is:

/Q//VU-VTdQ—/F/u(VT)-ndF—O

Now what do we do with this?

GCHB8108E Poisson problem in 2D and 3D 15 / 38

Boundary term

—l/u(VT)-ndF

This is our boundary term. It becomes zero for Dirichlet Boundary
conditions. If we have Neumann or Robin boundary conditions, this term
is replaced by the value of the flux.

For example, if —=VT -n = ¢¥(z,y) € T, then :

—l/u(VT)-ndF:{/uqu

GCHB8108E Poisson problem in 2D and 3D 16 / 38

Volumetric term

For now let’s assume we have Dirichlet Boundary conditions. The PDE we

are solving becomes:
// Vu-VTdQ =0
Q

We will use the same approach. First, we replace T' with its interpolation.

// VU-ZTJ-(ngj)dQ:O
Q J

GCHB8108E Poisson problem in 2D and 3D 17 / 38

Test function

// VU-ZT]-(V@)dQ:o
Q J

We decide to use a Galerkin method, so we choose u to be ¢;. We will
have as many equations as we have unknowns.

// Vi Y Ty (Ve;)dQ =0
Q J
We can rearrange this!

ZJZTJ/Q/ Vi - V;dQ =0

GCHB8108E Poisson problem in 2D and 3D 18 / 38

Integration and interpolation

The same rules we have seen apply for integrating and interpolating over
surface and volumes.
Integrals

Using tensor product, we can generalize our 1D integral into a 2D and 3D
integral respectively by carrying out a tensor product on each dimension.

Interpolation

Using tensor product, we can generalize our 1D Lagrange polynomials into
a 2D and 3D polynomials respectively by carrying out a tensor product on
each dimension.

GCHB8108E Poisson problem in 2D and 3D 19 / 38

Some comments are necessary

Gradients are vectors

In 2D:

i1
Véi = | b,
L Oy

In 3D:
8¢i
o
Vo = |2
09;
L 62 .

deal.II will make our life much easier for this...

Integrals are now surface or volume integrals

We are still integrating over a triangulation, but now all cells are 2D or 3D
objects. Thus we need to use higher dimensionality quadratures.

GCHB8108E Poisson problem in 2D and 3D 20 /38

Gradients: how does it work exactly? Oone

In our equations, we will need the gradients with respect to the physical

space, e.g. in 2D:
99,

Oy

But our shape function are only defined in the reference space. How do we
go from one to the other?

Blackboard

GCHB8108E Poisson problem in 2D and 3D 21 /38

More comments!

51, [[[vor-Toan =0 (1)
J Q
This can be decomposed furthermore:

S5 [[[ver voan—o 2)
j e g,

in which Q. are the elements (cells).

Which ¢; and ¢; are non-zero on 2.7

There is an explicit answer to this question.

GCHB8108E Poisson problem in 2D and 3D 22 /38

What happens for a mesh?

Let us talk about the degrees of freedom and how they change the
matrix...

More comments!

Which ¢, and ¢; are non-zero?

Only those for which their colocation point (support point) lie within or at
the edge of the cell.

We know a priori which ¢; and ¢; interact with one another.
Few of them actually interact...

For an an unstructured mesh, nothing allows us to infer the

numbering. We need a structure to store this information. This is
called a connectivity table.

The bigger the mesh, the more zeros we have... This is an issue we
will address in the following section.

GCHB8108E Poisson problem in 2D and 3D 24 /38

Outline

Sparse linear algebra

GCHB8108E Poisson problem in 2D and 3D 25 /38

Memory requirement

It will not be computationally tractable to store all of these zeros.
® ~ 100 Q1 elements in 2D : (10? x 10%) matrix, 10? doubles, 0.08MB
* ~ 1000 Q1 elements in 2D : (10% x 10) matrix, 10° doubles, 8MB
* ~ 10* Q1 elements in 2D : (10* x 10*) matrix, 10% doubles, 800MB
® ~ 10° Q1 elements in 2D : (10° x 10°) matrix, 10'? doubles, 8000GB

GCHB8108E Poisson problem in 2D and 3D 26 /38

Memory requirement

It will not be computationally tractable to store all of these zeros.
® ~ 100 Q1 elements in 2D : (10? x 10%) matrix, 10? doubles, 0.08MB
* ~ 1000 Q1 elements in 2D : (10% x 10) matrix, 10° doubles, 8MB
* ~ 10* Q1 elements in 2D : (10* x 10*) matrix, 10% doubles, 800MB
* ~ 105 Q1 elements in 2D : (10° x 10°%) matrix, 10'? doubles, 8000GB

How can we solve large problems then?

Avoid storing all the zeros! Use sparse matrices.

GCHB8108E Poisson problem in 2D and 3D 26 /38

Sparse matrices

We need to use matrices that only store the non-zero elements. This
requires two things:

e Knowing which elements of the matrix will be non-zero (a priori) to
allocate the necessary memory.

e A storage technique which is adequate for this.

GCHB8108E Poisson problem in 2D and 3D 27 /38

What do we store?

® We know a priori which row-columns will be non-zero.

® We can pre-emptively allocate just the right amount of memory

required for our sparse matrix. This pattern is called a sparsity
pattern.

e Establishing it is more of a technical issue than a scientific one.
Luckily for us, deal.ITI takes care of that for us.

1D -Q1l -2 cells 2D -Q1 -4 cells 2D -Q2 -4 cells

GCHB8108E Poisson problem in 2D and 3D 28 /38

Storage techniques

There are multiple formats to store sparse matrices. Some are more
adequate to generate sparsity patterns, while other are better for solving
linear systems.

Dictionary Of Keys (DOK). Similar to a python dictionary
List of list

Coordinate list

Compressed Sparse Row (CSR) or Compressed Sparse Column (CSC)

Let us see an example of CSR storage...

Why do you think that this storage technique is suitable for us?

GCHB8108E Poisson problem in 2D and 3D 29 /38

Naive sparsity pattern

GCHB8108E Poisson problem in 2D and 3D 30 /38

GCHB8108E Poisson problem in 2D and 3D 31/38

Code: Sparsity pattern

// 1. Create matrix

SparseMatrix<double> system_matrix;

~°I

// 2. Create a dynamic pattern (cheap to alter but not efficient
computationally)

DynamicSparsityPattern dsp(dof_handler.n_dofs());

// Generate the sparsity pattern
DoFTools: :make_sparsity_pattern(dof_handler, dsp);

// 3. Create a static sparsity pattern
SparsityPattern sparsity_pattern;

// Copy the dynamic one in the static one
sparsity_pattern.copy_from(dsp) ;

// 4. Use it to make our sparse matrix!
system_matrix.reinit(sparsity_pattern);

GCHB8108E Poisson problem in 2D and 3D 32 /38

Solving the linear system

The matrix and the vector we have built will allow us to obtain the
solution. However, we still need to solve a linear system of equations.
There are multiple ways to achieve this.

Direct solver
Solves the system exactly. Consumes a lot of memory and generally does
not scale well with the number of unknown or in parallel.

Iterative solvers

Solves the system iteratively. They are very sensitive to the type of
preconditioning, however, we need them if we want to solve very large
systems.

GCHB8108E Poisson problem in 2D and 3D 33 /38

Iterative solvers

Iterative solvers require two components:

The solver itself
Many types of solver that may exploit the structure of the matrix (e.g.,
Conjugate Gradient (CG)) or that may be general (e.g., GMRES).

Preconditioner

Alters the structure of the matrix to allow the iterative solver to reach a
solution faster. Again, there are many types of preconditioners (ILU,
AMG, GMG, etc.)

GCHB8108E Poisson problem in 2D and 3D 34 /38

Outline

Let's talk code

GCHB8108E Poisson problem in 2D and 3D 35 /38

Looping over cells

QGauss<dim> quadrature_formula(fe.degree + 1);

FEValues<dim> fe_values(fe, “Iquadrature_formula,
update_values | update_gradients |
update_quadrature_points | update_JxW_values);

const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
Vector<double> cell_rhs(dofs_per_cell);

std: :vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
for (const auto &cell : dof_handler.active_cell_iterators())

{

“~Ife_values.reinit(cell);

“"Icell_matrix = 0;

“~Icell_rhs = 0;

~~I// The integration part

}

GCHB8108E Poisson problem in 2D and 3D 36 /38

Inside the loop

““Ifor (const unsigned int q_index :
fe_values.quadrature_point_indices())

~~1{

“"I""Ifor (const unsigned int i : fe_values.dof_indices())

~mITTI{

~"I""I""Ifor (const unsigned int j : fe_values.dof_indices())

I ITTIA

“TITTITTITTIcell_matrix (i, j) +=

~"I""I""I""I(fe_values.shape_grad(i, q_index) * // grad phi_i(x_q)

“"I""I""I""Ife_values.shape_grad(j, q_index) * // grad phi_j(x_q)

“TITTITTIT"Ife_values.JxW(q_index)); // dx

~TITTICTI

cTITTITTI

“"I""I""Icell_rhs(i) += (fe_values.shape_value(i, q_index) * //
phi_i(x_q)

~"I""I""Iright_hand_side.value(x_q) * // f(x_q)

~~I""I""Ife_values.JxW(q_index)); // dx

~~IT°IY

~IY

~TI

GCHB8108E Poisson problem in 2D and 3D 37 /38

Assembling inside the cell loop

~~"Icell->get_dof_indices(local_dof_indices);

““Ifor (const unsigned int i : fe_values.dof_indices())
~~1{

~"I""Ifor (const unsigned int j : fe_values.dof_indices())
~"I""Isystem_matrix.add(local_dof_indices[i],
~~"I""Ilocal_dof_indices[j],

~~I""Icell_matrix(i, j));

N e i

~~I""Isystem_rhs(local_dof_indices[i]) += cell_rhs(i);
~~I}

~TI

GCHB8108E Poisson problem in 2D and 3D

38 / 38

	Recapitulation
	FEM: Weak form in 2D and 3D
	Sparse linear algebra
	Let's talk code

