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Motivation

So far, we have learnt how to solve a linear PDE, the Poisson equation. It
is a common PDE that enables us to model many phenomena:
• Heat diffusion
• Diffusion of chemical species
• Diffusion of electrons
• Linear elasticity
• etc...

However, the majority of the problems of interest in engineering are not
linear. Solving these problems will be significantly more involved.
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Temperature dependent properties
In reality, the thermal conductivity of a material often depends on its
temperature. If we assume that the thermal conductivity k varies linearly
with temperature:

k = A+BT

Then our heat equation will be more complex

∇ · (k∇T ) = 0

Let’s break this down...
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Chemical reactions

Many chemical reactions have non-linear kinetics. For example, the
following reaction:

2A −−→ B

would lead to the following diffusion-reaction equation:

∇ · (D∇cA) = −kc2A

What makes this equation non-linear?
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Euler equations
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Navier-Stokes equations

∇ · u = 0

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u+ ρg
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Many others...

• Cahn-Hilliard
• Saint-Venant
• Plasticity
• ...
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Notation

We will write all non-linear problems in the same form, which we will call
the residual form:

R(v) = 0

where v is the vector of state variables of the problem. For example, for
the temperature equation: v = [T ]. R(v) is the residual.
Our non-linear equation will have been solved when we have found v∗ such
that R(v∗) = 0.
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Example of notation

Take the following equation:

∇2T = cT

with c a constant. This equation written in residual form is:

∇2T − cT = R(T )

when R(T ) = 0, we have solved our equation.
Is this equation linear or non-linear?
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Picard’s method

Picard’s method (or successive approximation) is a method to solve
non-linear equations that is very easy to implement. Let’s illustrate how it
works using an example.
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Example

Recall our temperature dependent thermal conductivity problem.

k = A+BT

with our heat transfer equation

∇ · (k∇T ) = 0

The issue with this equation is that the conductivity depends on T leading
to a non-linearity.

The idea behind Picard’s method is to solve it successively by estimating
the weaker non-linear terms at a previous value of the solution.
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Successive approximations

In this context, Picard’s method would take the following form:
Input:
• Initial estimate of the temperature T 0

• Tolerance ϵ and maximal number of iterations N

Result: The field T which satisfies the non-linear equation.
Initialize n = 0 and T 0 = 1
while |R| > ϵ and n < N do

Calculate Tn+1 by solving:
∇ ·

(
k(Tn)∇Tn+1

)
= 0

Calculate R(Tn+1)
n = n+ 1

end
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Conclusions

Advantages
• Very easy to implement
• Converges in general for weakly non-linear problems
• Can be coupled to relaxation methods to ensure stability

Disadvantages
• The choice of initial estimate is very important
• Convergence can be very slow. More than 10 iterations may be

required. If relaxation is used, this is even worse
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Concept

Pseudo transient (or adjoint time-stepping) methods offer a slow, but
robust way of solving non-linear problems.
• Formulate the non-linear problem as a transient problem
• Make a component of the non-linearity explicit
• Integrate in time until steady-state is reached
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Example

Let’s take our example problem:

∇ · (k∇T ) = 0

We transform it to its transient counterpart:

∂T

∂t
−∇ · (k(T )∇T ) = 0

we apply our finite difference scheme in time and formulate an explicit
expression for k.

T t+∆t − T t

∆t
−∇ ·

(
k(T t)∇T t+∆t

)
= 0
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Analysis

Advantages
• Robust. The lower the time step, the more robust this is. It behaves

similar to a relaxed successive approximation
• Not too difficult to implement

Disadvantages
• Slow. May require prohibitively small time steps
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Concept

We need a faster method to solve non-linear problems. We will leverage a
well-established method which you might have seen in the past: Newton’s
method.
• Let’s recap how it works for regular problems
• Then let’s explain how it works in the context of the finite element

method
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Towards Newton’s method
Taylor series
The Taylor series of a real function f(x) around a point x where the
function is differentiable is:

f(x+ δx) = f(x) +
δx

1!
f ′(x) +

(δx)2

2!
f ′′(x) +

(δx)3

3!
f ′′′(x) + ...

We seek to construct a systematic method for solving equations of the
form:

f(x) = 0

GCH8108E Non-linear Problems 24 / 40



Graphical interpretation

The derivative of the function is used to draw a line to approximate the
root. The closer the point of evaluation of the derivative is to the root,
the better the approximation.
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Algorithm

Input:
• An initial estimate x0

• A function that calculates f(x) and another which calculates f ′(x)

• A tolerance ϵ and a maximal number of iterations N

Result: The root r such that f(r) ≈ 0
Initialize n = 0 and δx0 = 1
while |δxn| > ϵ and n < N do

Calculate δxn = − f(xn)
f ′(xn)

Calculate xn+1 = xn + δxn

n = n+ 1
end
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Newton-Raphson

The Newton-Raphson method is the generalization of Newton’s method
for d equations. Consider the following system of equations:

f1(x1, x2) = 0

f2(x1, x2) = 0

Remark: we will note here the coordinate with the subscript and the
iteration with the exponent. So xnk is the coordinate k ∈ [1, d] of the
vector x at iteration n.
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Taylor expansion for 2 equations

We can solve the system in the neighborhood of a point xi.

f1(x1 + δx1, x2 + δx2) = 0

f2(x1 + δx1, x2 + δx2) = 0

The Taylor expansion of these two functions is the natural extension of the
1D case.

f1(x1 + δx1, x2 + δx2) = f1(x1, x2) +
∂f1(x1, x2)

∂x1
δx1 +

∂f1(x1, x2)

∂x2
δx2 + ...

f2(x1 + δx1, x2 + δx2) = f2(x1, x2) +
∂f2(x1, x2)

∂x1
δx1 +

∂f2(x1, x2)

∂x2
δx2 + ...
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Taylor expansion for 2 equations
Neglecting the high order terms, we obtain the linear approximation of the
system of nonlinear equations on which we can iterate:

f1(x1, x2) +
∂f1(x1, x2)

∂x1
δx1 +

∂f1(x1, x2)

∂x2
δx2 = 0

f2(x1, x2) +
∂f2(x1, x2)

∂x1
δx1 +

∂f2(x1, x2)

∂x2
δx2 = 0

Introducing the residual vector R(x) = f(x), the jacobian matrix J (x)
and the correction vector δx we obtain:

J (x)δx = −R(x)

As in the case of the classical Newton method, the Newton-Rapshon
method will converge when the norm of the residual is below a fixed
tolerance.
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Algorithm

Input:
• A starting vector x0

• A function to calculate R(x) and J (x)

• A tolerance ϵ and a maximal number of iterations N

Result: The root r such that ∥R(r)∥ ≈ 0
Initialize n = 0 and δx0 = 1
while ∥δxn∥ > ϵ and n < N do

Calculate J (xn) and R(xn)
Solve the linear system J (xn)δxn = −R(xn)
Calculate xn+1 = xn + δxn

n = n+ 1
end
Let us talk about relaxation methods...
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Using Newton’s method in FEM

Newton’s method is an effective way to solve non-linear equations. It
requires the following:
• Expression of the residual
• Expression of the jacobian matrix

Calculating the Jacobian matrix in the context of the finite element
method is not as easy as it seems.
Let’s see with an example!
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Example

We wish to solve the following problem:

∇ · (k∇T )− T 2 = 0

There are two ways we can proceed:
1 Obtain the weak form of the non-linear problem, then calculate the

Jacobian matrix
2 Calculate the Jacobian of the non-linear problem by linearizing it,

then obtain the weak form
Both approaches are strictly equivalent, but it is easier not to get confused
with the second one. Let’s proceed.
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Calculating the derivative
We want to solve:

∇ · (k∇T )− T 2 = 0

Using Newton’s method:

J (x)δx = −R(x)

How do I calculate J (x)? Using a directional derivative:

J (x)δx = lim
ϵ→0

R(x+ ϵδx)−R(x)

ϵ
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Solution

The residual is:

R(T ) = ∇ · (k∇T )− T 2 = 0

The directional derivative is:

J(T )δT = ∇(k∇δT )− 2TδT
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Towards the weak form

The problem we now want to solve is:

∇ · (k∇δT )− 2TδT = −R(T )

What is our unknown now? It is not T anymore, but it is the correction
δT .
This is the variable we will be solving for. It is also the variable we need
boundary conditions for!
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Solution

The weak form of the problem, assuming Dirichlet boundary conditions, is:

−
∑
j

δTj

∫∫∫
Ω

k∇ϕi∇ϕj +

∫∫∫
Ω

2Tϕiϕj

 =

∫∫∫
Ω

k∇ϕi∇T +

∫∫∫
Ω

ϕiT
2


by solving this problem iteratively, we will reach a point where R(T ) will become
zero and vanish.
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Other examples

Try to calculate the directional derivatives of the following as exercise:

∇ · (T∇T ) = 0

∇ · (∇T ) = sinT

∇ · (∇T ) = σ(T 4 − T 4
∞)

∇ · (∇c3) = 0
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Conclusions

We have seen multiple methods to solve non-linear problems:
• Picard
• Pseudo-transient
• Newton-Raphson

All methods have their pros and cons. Although Newton’s method is by
far the most efficient, obtaining an analytical formulation of the Jacobian
can be an immense challenge for some equations. It is always necessary to
find a balance between human time and computational time!
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