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Motivation

We have finally reached the pinnacle of where we want to be concerning
classical methods: the solution of the incompressible Navier-Stokes
equations.
These equations are key to engineering. They describe multiple
phenomena:
• Flow of gases (as long as Ma < 0.3): wind turbines, gas in chemical

processes, pneumatic transport, etc.
• Flow of liquids: blood, microfluidics, heat exchangers, molten plastic,

etc.
It’s hard to find an industry in which they are not important.
Let’s make sure we fully understand them before we try to solve them...
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Navier-Stokes equations

Problem definition

∇ · u = 0

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u+ ρg

• u is the velocity vector.
• p is the pressure.
• ρ = C is the density.
• µ is the dynamic viscosity. Here we have assumed that the fluid is

Newtonian such that µ is constant.
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Rewritten

∇ · u = 0

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u+ ρg

Can be rewritten as:

∇ · u = 0

∂u

∂t
+ (u · ∇)u = −∇p∗ + ν∇2u+ g

• ν is the kinematic viscosity. This is the real viscosity that controls the
Reynolds number.

• p∗ is the reduced pressure.
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Reynolds number

Let us consider the momentum equation for a steady-state case:

(u · ∇)u = −∇p+ ν∇2u

Defining the following relations x = Lx∗, u = Uu∗ and p = U2p∗, the
equation can be rewritten as:

(u · ∇)u = −∇p+ 1

Re
∇2u

where the Reynolds number is the analogous of the Peclet number.
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Boundary conditions

No-slip
Fluid in contact with an object goes at the velocity of said object.

u = uo

This is the traditional boundary condition.

Slip / no-penetration
There is no velocity normal to the object.

u · n = 0

This is often used for symmetry or free surfaces.
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Boundary conditions

Inlet
Specify the velocity of the fluid entering the domain. Fixed velocity profile.

u = uinlet

Same as the no-slip boundary condition.

Periodic
Fluid exiting the domain will re-enter on the opposite side.

uoutlet = uinlet

No actual physical meaning, they are used to simulate an infinite extension
of the domain in one of more directions.
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Boundary conditions

Outlets
Outlets are tricky. We can either consider outlets to be:

p∗ = 0

∇u · n = 0

or a “do-nothing”, zero-traction boundary condition:

−p∗ + ν∇u · n = 0

Both have a different meaning.
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What is pressure?

Recall that the incompressible Navier-Stokes equations have the following
equation of state:

ρ = C

Not related to pressure... no changes in volume even under varying
pressure?
Recall that an important property of pressure is that is transmitted to the
fluid. The transmission does not occur instantaneously and depends on
two factors:
• The speed of sound: rate at which pressure disturbances propagate.
• The shape of the container: waves refract and reflect on the walls

increasing the distance and time the pressure waves need to travel.
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What is sound?

In physics, sound is a vibration that propagates as an acoustic wave,
through a transmission medium such as a gas, liquid or solid.
• Transmitted through gases and liquids as longitudinal waves.
• Longitudinal sound waves are waves of alternating pressure deviations

from the equilibrium pressure, causing local regions of compression
(high-density) and rarefaction (low-density).
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Speed of sound

The speed of sound in a medium is related to thermodynamic properties:

c2 =

(
∂p

∂ρ

)
s

What are the consequences of ρ = C for the incompressible Navier-Stokes?

The speed of sound is infinite! There is no sound, information propagates
everywhere.
Consequence of incompressibility
• Sound is pressure waves.
• Speed of sound is infinite.
• Pressure waves propagate instantanously everywhere.
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Is that it?

Not really... velocity changes can also affect the fluid pressure and density.
Recall Bernoulli’s equation when a fluid accelerates from V2 to V1 at a
constant height:

∆p = −1

2
ρ
(
V2

2 − V1
2
)

When do velocity variations lead to significant density changes? We use
the Mach number:

Ma =
V

c

When Ma < 0.3, the flow is assumed incompressible.
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An equation for pressure

Still, let’s try to build an equation for pressure.

∇ · u = 0 (1)
∂u

∂t
+ (u · ∇)u = −∇p∗ + ν∇2u (2)
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Pressure equation

∇u : ∇u = −∇2p∗ (3)

• Pressure is driven by a Poisson equation which depends on the
instantaneous velocity field.

• Pressure has no time derivative. It is never transient.
• Pressure is a Lagrange multiplier. It is a constraint to impose mass

conservation.
• Pressure is linked to the continuity equation, not to the momentum

conservation equation.
• Generally, it is what couples the velocity components amongst

themselves.
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Interpretation

∇ · u = 0 (4)
∂u

∂t
+ (u · ∇)u = −∇p∗ + ν∇2u (5)
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Conclusion

• Incompressible Navier-Stokes equations imply a constant density.
• Constant density implies an infinite speed of sound.
• Pressure is a Lagrange multiplier which is driven by a Poisson

equation.
• This, with turbulence, is what makes the solution of the

Navier-Stokes equations so difficult. Now that we understand what
we are facing, let’s face it together...
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Weak form: Stokes
Let’s start with the steady Stokes equation and establish its weak form.

∇ · u = 0 (6)
∇p∗ − ν∇2u = 0 (7)

Notation
• q is the test function for pressure, v the test function for velocity. We

have as many test functions v as we have velocity components u.
• Since pressure is related to mass conservation, we will use q to test

(6) and v to test (7)
• Eq. (7) is a vector equation. So testing it with v will imply a scalar

product!
• This will be difficult. Stop me if you have questions. If you do not

understand the first time, it just means you are a human being.
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Weak form: Stokes

∫∫∫
Ω

q∇ · udΩ = 0

∫∫∫
Ω

− (∇ · v) p∗ + ν∇vT : ∇udΩ +

∫∫
Γ

v ·
(
p∗n− ν (∇u)

T · n
)
dΓ = 0

Our natural boundary condition has changed:∫∫
Γ

v ·
(
p∗n− ν (∇u)

T · n
)
dΓ (8)

is equivalent to a zero traction boundary condition. This is very similar to a zero
pressure outlet.
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Weak form: Stokes

Introducing our interpolation polynomial:
• ψi is the Lagrange polynomial for pressure.
• ϕj is the vector Lagrange polynomial for velocity. It is a vector of

dim Lagrange polynomials.

∑
j

uj

∫∫∫
Ω

ψi∇ · ϕjdΩ = 0

∑
j

−p∗j
∫∫∫
Ω

(∇ · ϕi)ψjdΩ +
∑
j

uj

∫∫∫
Ω

ν∇ϕT
i : ∇ϕjdΩ

+
∑
j

p∗j

∫∫
Γ

ψjϕi · ndΓ−
∑
j

uj

∫∫
Γ

ϕi · ν(∇ϕj)
T · ndΓ = 0
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Matrix structure

∑
j

uj

∫∫∫
Ω

ψi∇ · ϕjdΩ = 0

∑
j

−p∗j
∫∫∫
Ω

(∇ · ϕi)ψjdΩ +
∑
j

uj

∫∫∫
Ω

ν∇ϕT
i : ∇ϕjdΩ

+
∑
j

p∗j

∫∫
Γ

ψjϕi · ndΓ−
∑
j

uj

∫∫
Γ

ϕi · ν(∇ϕj)
T · ndΓ = 0

What will be the matrix structure? Let’s assume we can write in block
form:

M =

[
A BT

B C

][
u

p∗

]
= 0 (9)
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Matrix structure: A

M =

[
A BT

B C

][
u

p∗

]
= 0 (10)

The A block is given by all the terms that combine ϕi and ϕj :

A =

∫∫∫
Ω

ν∇ϕT
i : ∇ϕjdΩ
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Matrix structure: BT

M =

[
A BT

B C

][
u

p∗

]
= 0 (11)

The BT block is given by all the terms that combine ϕi and ψj :

BT =

∫∫∫
Ω

− (∇ · ϕi)ψjdΩ

GCH8108E Navier-Stokes Equations 25 / 63



Matrix structure: B

M =

[
A BT

B C

][
u

p∗

]
= 0 (12)

The B block is given by all the terms that combine ψi and ϕj :

B =

∫∫∫
Ω

ψi∇ · ϕjdΩ
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Matrix structure: C

M =

[
A BT

B C

][
u

p∗

]
= 0 (13)

The C block is given by all the terms that combine ψi and ψj :

C = 0

Wait wut?

GCH8108E Navier-Stokes Equations 27 / 63



Matrix structure: C
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Saddle point problem

M =

[
A BT

B 0

][
u

p∗

]
= 0 (14)

The system of equations we have to solve for the Stokes problem leads to
a saddle-point problem. These matrices are very difficult to solve because
the zero block on the diagonal.

• If we use a direct solver, this will not pose any particular problem.
• For iterative solver, this requires very specific preconditioning

techniques. Hence people have developed approaches to circumvent
this limitation.
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Code complexity

• Our code needs to be able to understand that we now have multiple
components per location where we store the degree of freedom. Our
test function v is a Tensor<1,dim> and our gradient ∇v is a
Tensor<2,dim>. These are much more complicated mathematical
objects to manipulate.

• At every location where we store degrees of freedom, we now have
multiple variables stored. In 2D, we now store ux, uy, p instead of just
storing T . This generates much more complicated sparsity patterns.
This is also significantly complicated to implement.

• Assembling our equations will be more difficult.
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Ladyzhenskaya–Babuška–Brezzi condition

But wait, there’s more?
The Ladyzhenskaya–Babuška–Brezzi condition is a sufficient condition for
a saddle point problem to have a unique solution that depends
continuously on the input data. This condition applies to all saddle point
problems like the Stokes and the Navier-Stokes equations

What does it mean?
When a variable is a constraint (pressure) over a field (velocity), the
solution space for the constraint cannot be equal to or larger than the
variable it constraints. Otherwise, we obtain checkerboard effect.
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Ladyzhenskaya–Babuška–Brezzi condition

Consequence
The combination of some element type for pressure and some element
type for velocity are not LBB compatible. They lead to solutions which
will not converge as we refine the mesh.
• Qn for velocity and Qn for pressure are not LBB stable
• Qn for velocity and Qn−1 for pressure are LBB stable
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Navier-Stokes

The same process can be applied to the Navier-Stokes equations, but we
need to first linearize the problem.

∇ · u = 0 (15)
(u · ∇)u+∇p∗ − ν∇2u = 0 (16)
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Navier-Stokes: linearized form

The residual is:

Rc(u, p) = ∇ · u (17)
Rm(u, p) = (u · ∇)u+∇p∗ − ν∇2u (18)

The problem for which we need to formulate the weak form is:

∇ · δu = −Rc(u, p) (19)
(δu · ∇)u+ (u · ∇) δu+∇δp∗ − ν∇2δu = −Rm(u, p) (20)

There is significant non-linearity which arises from the advection term.
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Navier-Stokes: Weak-form

Now we can find the weak form of the linearized equations:

∇ · δu = −Rc(u, p) (21)
(δu · ∇)u+ (u · ∇) δu+∇δp∗ − ν∇2δu = −Rm(u, p) (22)
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Navier-Stokes: final system

Similarly to the Stokes problem we find a saddle-point problem:[
A BT

B 0

][
u

p∗

]
=

[
−Ru

−Rm

]
(23)

This system has to be solved at every Newton iteration. Notice that the
right-hand side is no longer zero.
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Partial conclusions

Solving the incompressible Navier-Stokes equations lead to the following
problems:
• Solve a non-linear vector-valued problem
• Every iteration requires solving a saddle-point problem
• The LBB condition applied to this problem too

This is a general challenge with the Navier-Stokes equations. We will learn
two different resolution strategies to solve the Navier-Stokes equations.
Moreover, we will see how to circumvent these challenges.
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Straightforward solution methods

Straightforward solution method consist in solving the system matrix that
arises from the Navier-Stokes equation efficiently:[

A BT

B 0

][
u

p∗

]
=

[
−Ru

−Rm

]
(24)

The main ideas of the algorithm are:
• Assemble Jacobian matrix and right-hand side
• Formulate adequate preconditioner for the equations
• Solve linear system
• Iterate until residual is zero

The main challenge is in formulating an adequate preconditioner for the
matrix. It is not an easy endeavour and remains an active area of research.
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Conclusion

Main challenges
The main difficulty in solving the Navier-Stokes lies in:
• Assembling the matrix (can be an expensive operation)
• Formulating an adequate preconditioner to solve the linear system

that arises
This are active areas of research.

Other issues remain
Other issues with the solution of advection problem remain. When the
Péclet number becomes too high, it remains necessary to introduce
stabilization into the scheme (SUPG).
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Understanding components

In the Navier-stokes equations, we now have multiple DoF that can reside
at a same location.
• Some must be interpreted as part of a vector (u) while some not
• The DoFHandler must be aware of this notion
• The FEValues must also be aware of this notion

What does this change?
• The FE object becomes an FESystem made of multiple FE
• The DoFHandler receives the FESystem when being initialized
• The components of the DoFHandler can be interpreted by

FEValuesExtractors
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The code: Understanding components

This will alter multiple parts of the code. The first one is the declaration
of the fe and the initialization of the DoFHandler:

// This will be part of our solver class.
FESystem<dim> fe;
^^I
// Instantiating it will be different also
// as it is built from multiple regular FE_Q
fe(FE_Q<dim>(degree + 1), dim, FE_Q<dim>(degree), 1)

dim velocity components and 1 pressure component.
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The code: Understanding components
// The extractors enable us to interpret components as scalars or

tensors
const FEValuesExtractors::Vector velocities(0);
const FEValuesExtractors::Scalar pressure(dim);
^^I
// You can now reconstruct the velocity and the pressure
// from the components
for (const auto &cell : dof_handler.active_cell_iterators())
{

fe_values.reinit(cell);
fe_values[velocities].get_function_values(solution,

previous_velocity_values);
^^I^^I^^I^^I

fe_values[velocities].get_function_gradients(solution,
previous_velocity_gradients);

^^I^^I^^I^^I
fe_values[pressure].get_function_values(solution,^^I^^I^^I

^^I^^I^^I^^I^^I previous_pressure_values);
}
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The code: understanding components

const FEValuesExtractors::Vector velocities(0);
const FEValuesExtractors::Scalar pressure(dim);

// Same can be done for shapes from the components
for (const auto &cell : dof_handler.active_cell_iterators())
{
^^Ifor (unsigned int k = 0; k < dofs_per_cell; ++k)
^^I{
^^I^^I// divergence of shape
^^I^^Ife_values[velocities].divergence(k, q);
^^I^^I// gradient of shape
^^I^^Ife_values[velocities].gradient(k, q);
^^I^^I// shape function
^^I^^Ife_values[velocities].value(k, q);
^^I}
}
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Vector test functions
Vector test functions are complicated to understand. To better understand
them, let’s look at the following code:

// Loop over the cells
for (const auto &cell : dof_handler.active_cell_iterators())
{

for (unsigned int q = 0; q < n_q_points; ++q)
^^I// Loop over the degrees of freedom
^^Ifor (unsigned int i = 0; i < dofs_per_cell; ++i)
^^I{
^^I^^I// shape function
^^I^^Istd::cout << fe_values[velocities].value(k, q) <<std::endl ;
^^I^^Istd::cout << fe_values[pressure].value(k, q) <<std::endl ;
^^I}
}

How many dofs_per_cell would I have in 2D Q1-Q1? What value does
my shape function take in Q1-Q1? Q2-Q1?
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Result: Q1-Q1
DOF no. Component ux uy p

0 0 X
1 1 X
2 2 X
3 0 X
4 1 X
5 2 X
6 0 X
7 1 X
8 2 X
9 0 X
10 1 X
11 2 X

Even though v is a vector, it always ends up being a unit vector. This
might seem redundant, but it makes writing the weak form so much

simpler.
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Result: Q2-Q1
DOF no. Component vx vy q

0 0 X
1 1 X
2 2 X
3 0 X
4 1 X
5 2 X
6 0 X
7 1 X
8 2 X
9 0 X
10 1 X
11 2 X
12 0 X
13 1 X
14 0 X
15 1 X
16 0 X
17 1 X
18 0 X
19 1 X
20 0 X
21 1 X
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Predictor-corrector methods

Premise
The premise behind predictor-corrector methods is to simplify the system
of equations that arises by separating the momentum equation from the
pressure equation and building an equation for pressure which is easier to
solve.

Concept
The predictor-corrector methods allow us to separate the solution of
momentum and pressure leading to:
• A smaller system of equations.
• No saddle-point problem.

But for this, we need an equation for pressure.
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Equation for pressure

Recall the equation for pressure:

u · ∇u+∇p∗ − ν∇2ui = 0 (25)
∇2p∗ = −∇ · ((u · ∇)u) (26)

This equation introduces also an additional boundary condition on Γ:

∇p = 0 (27)

The idea behind predictor corrector methods is that you can solve them
subsequently.
• Solve momentum
• Solve pressure

and that at convergence, you will obtain the desired flow.
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Predictor-Corrector methods

Predictor-corrector methods work by introducing a Poisson equation for
pressure:
Advantages

• Compatible with Qn/Qn elements.
• Easier to precondition the matrices (and they are smaller).
• Boundary condition for pressure remain an active area of discussion.

Disadvantages
• Convergence can be slow (however, both systems can be put in the

same matrix).
• Confusing literature.
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Stabilized methods
Stabilized methods aim at modifying the Navier-Stokes equations to
facilitate their solution instead of splitting them into multiple equations.
They work in a similar fashion as SUPG method by adding blocks which
depend on the strong form of the residual. An example is PSPG/SUPG
stabilization:

∫
Ω

∇ · uqdΩ+
∑
K

∫
Ωk

(
∂u

∂t
+ u · ∇u+∇p−∇ · τ − f

)
· (τu∇q) dΩk = 0

(28)∫
Ω

(
∂u

∂t
+ u · ∇u− f

)
· vdΩ+

∫
Ω

τ : ∇vdΩ−
∫
Ω

p∇ · vdΩ

+
∑
K

∫
Ωk

(
∂u

∂t
+ u · ∇u+∇p−∇ · τ − f

)
· (τuu · ∇v) dΩk = 0 (29)
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Stabilized methods

Stabilized methods modify the Navier-Stokes equations:
Advantages

• Compatible with Qn/Qn elements.
• Can also serve as turbulence models (Implicit LES).
• Numerical parameters vanish.

Disadvantages
• Difficult literature.
• Lead to large matrices which require careful preconditioning.
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What to do with your solution?

It is not trivial to post-process the result that arise from the Navier-Stokes
equations. Here we aim to show some ways the results can be
post-processed.
• Streamlines
• Derived fields
• Forces on objects
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Streamlines
Streamlines are an interesting way to post-process a velocity field. In
essence, they show the trajectories of particles if the velocity field was
frozen (e.g. assuming ∂tu = 0). They are obtained by solving the
following equation for tracer particles:

∂tx = u(x)

This equation is generally solved using a Runge-Kutta scheme. The
challenge here is to adequately interpolate the velocity field to the position
of the particles, something that is easily done in FEM.
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Derived fields: Vorticity

Multiple fields can be calculated from the velocity and the pressure field.
These fields can be useful to help a user understand or postprocess
information.

A first example is the
vorticity:

ω = ∇× u

The vorticity is especially
useful to identify vortices in
turbulent flows (also known
as eddies).
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Derived fields: Q criterion
The Q criterion is the second invariant of the velocity gradient tensor. It is
computed as:

Q = −1

2

∂ui
∂xj

∂uj
∂xi

= −1

2

(
SijSij −

1

2
ω2

)
Sij : strain
ω: vorticity

Positive value of the Q criterion, along with negative pressure (with
respect to the average pressure) indicate vortices.
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Forces on object

Using the velocity field and the shape functions, the stress acting on faces
can be straightforwardly calculated. To obtain the total force acting on Γb,
a subset of Γ, the total stress tensor needs to be integrated:

fb =

∫
Γb

σ · ndΓb (30)

with σ = −pI + (∇u+ (∇u)T ) the stress tensor.
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Conclusions

Challenging
Solving the incompressible Navier-Stokes equations is very difficult. There
are many ways to solve them. We have seen three families of strategies:
• Straightforward solution using adequate preconditioning.
• Predict-corrector approaches.
• Stabilized approaches.

Active area of research
This remains an active area of research. In the end, there are many
implementation subtleties that differentiate all software.

Homework
The homework will guide you through an existing code that solves the
incompressible Navier-Stokes equations in a straightforward fashion.
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Additional code for boundary conditions
We introduce a new object to define constraints:

AffineConstraints<double> constraints;

We can specify Dirichlet BCs (no slip, inlets):

VectorTools::interpolate_boundary_values(dof_handler,
^^I^^I^^I^^I^^I^^I^^I^^I^^I^^I2,
^^I^^I^^I^^I^^I^^I^^I^^I^^I^^IFunctions::ZeroFunction<dim>(dim +

1),
^^I^^I^^I^^I^^I^^I^^I^^I^^I^^Iconstraints,
^^I^^I^^I^^I^^I^^I^^I^^I^^I^^Ife.component_mask(velocities));

We can also add Neumann BCs (slip):

std::set<types::boundary_id> no_normal_flux_boundaries;
no_normal_flux_boundaries.insert(2);
VectorTools::compute_no_normal_flux_constraints(

dof_handler, 0, no_normal_flux_boundaries, constraints);^^I
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