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The command line

BASH (Bourne Again Shell) is a command line language that is
omnipresent on linux computers and clusters. It has numerous uses:

• Launch programs

• Copy, move, remove files

• Modify files

• Etc.

But why do we use such a primitive tool?

• Low resources required

• Omnipresent on numerous platforms (clusters all operate on BASH
nowadays)

• Works remotely from any type of machines
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We just need the basics!

We will indicate the start of the command line using:

$

To change the current directory to another one

$ cd d e s t i n a t i o n

To copy files

$ cp source d e s t i n a t i o n

To delete files

$ rm f i l e

To remove folders

$ rm −r f o l d e r
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The basics

List content of the current folder

$ l s o r $ l l

List content of a folder

$ l s f o l d e r

Move a file (instead of copying it)

$ mv f i l e d e s t i n a t i o n

Find occurence of string in files

$ gr ep s t r i n g f i l e

Other useful commands: pwd, ∼, cat file
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More information

The following website provides a very nice (and fast) tutorial to the
command line:

https://ubuntu.com/tutorials/command-line-for-beginners#

1-overview

Do not worry if you have never used a command line before. It is easy to
learn how to use a command line as you go. Many students have taken
this class before without any previous command line experience and did
not face any struggles.
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Introduction to C++

C++ is powerful general-purpose programming language:

• Its syntax and its low-level management is derived from C

• Object oriented (or not, it is sometimes a matter of taste)

Language designed for performance, efficiency and flexibility:

• The flexibility of C++ is what makes it a better choice for large-scale
simulation software than Fortran or regular C

• The same performance can be obtained, but the result is a much
more flexible code structure

This remains a matter of choice, it is possible to design an efficient
simulation code in any language.

Do not be scared if you have never programmed in C++ before. Some
useful references are available on the moodle website to help you.

GCH8108E Intro 9 / 38



Introduction to C++

C++ is powerful general-purpose programming language:

• Its syntax and its low-level management is derived from C

• Object oriented (or not, it is sometimes a matter of taste)

Language designed for performance, efficiency and flexibility:

• The flexibility of C++ is what makes it a better choice for large-scale
simulation software than Fortran or regular C

• The same performance can be obtained, but the result is a much
more flexible code structure

This remains a matter of choice, it is possible to design an efficient
simulation code in any language.
Do not be scared if you have never programmed in C++ before. Some
useful references are available on the moodle website to help you.

GCH8108E Intro 9 / 38



Philosophy in this class

More often than not, you will have to work with codes that are already
designed:

• These codes can be open source

• They can also be in-house software

More importantly it is always the case that a building block of what you
need already exists in the form of a library:

• Pre-processing (mesh reading)

• Post-processing (format to be read by post-processor)
• Sparse linear matrix and linear solvers:

• Trilinos
• PETSC
• Eigen
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Philosophy in this class

It is important to know how to code a simulation software!
Often more important to know how to modify existing codes...
We have a limited amount of time and we want to focus on the modeling,
the science and the programming of this science. The post-processing,
pre-processing part is important, but programming it can be very tedious.
Therefore in this class we will be working with code templates:

• This will make your life easier.

• When it comes to programming your own application, think about
using a library for this. If you want to do it quickly, you can steal my
routines, I’ll be happy if I was of any help!
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Features of C++

Compiled

The source code is compiled by a compiler to make efficient machine code.

Statically typed

Variables have a type that is defined at compile time.
The type of variables must be declared explicitly.

Large ecosystem

Compilers, testing toolset, automatic indentation, IDEs, etc...

HPC-ready

Native support for the Message Passing Interface (MPI). C and Fortran
are the other languages with native support.
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Hello world!

#include <iostream>

// This function is required in every C++ program

int main()

{

std::cout << "Hello World!";

return 0;

}
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Numerical data types

Double precision (64 bits):

double a;

Integers (32 bits):

int i;

Boolean (8 bits):

bool condition;
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Mathematical operations

Addition

double c = a + b;

Substraction

double c = a - b;

Multiplication

double c = a * b;

Division (be careful about this one)

double c = a / b;
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Strings

C++ strings are extremely flexible. They are very similar to python
strings. They have a few characteristics.

• In namespace std

• Requires a specific include <string>

• http://www.cplusplus.com/reference/string/string/

std::string word;
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Decision (control) structures

Control structures in C++ are similar to those encountered in most
programming languages:

Conditional structures
They will be if-else statements or switch

Loop (iteration) structures

They will be for loops (when the number of iterations is known a priori)
or while statements.
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If conditions

#include <iostream>

int main()

{

int age;

std::cout << "Please input your age: ";

std::cin >> age;

std::cin.ignore(); // Throw away enter

if (age < 100) {

std::cout << "You are pretty young!\n";

}

else if (age == 100) {

std::cout << "You are old\n";

}

else {

std::cout << "You are really old\n";

}

return 0;

}
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For loops

#include <iostream>

int main ()

{

// for loop execution

for (int a = 10; a < 20; a = a + 1)

{

std::cout << "value of a: " << a << std::endl;

}

return 0;

}
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While loops

#include <iostream>

int main ()

{

// Local variable declaration

int a = 10;

// while loop execution

while(a < 20)

{

std::cout << "value of a: " << a << std::endl;

a++;

}

return 0;

}
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Do..While loops

#include <iostream>

int main ()

{

// Local variable declaration:

int a = 10;

// do loop execution

do

{

std::cout << "value of a: " << a << std::endl;

a = a + 1;

} while( a < 20 );

return 0;

}
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A sample program

#include <iostream>

int main()

{

int n;

int factorial = 1.0;

std::cout << "Enter a positive integer: ";

std::cin >> n;

for(int i = 1; i <= n; ++i)

{

factorial *= i;

}

std::cout << "Factorial of " << n << " = " << factorial;

return 0;

}
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A program with a function

#include <iostream>

double square(double x)

{

return x*x;

}

int main()

{

double y = square(10);

std::cout << "The square value is " << y << std::endl;

return 0;

}

C++ is a strongly typed language. Functions must have a return type. if a
function does not return anything, it is declared as void.
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A real program

Real programs combine multiple files that interact amongst themselves.
To achieve this, C++ uses two type of files:

Header files (.h)

They contain the declaration of the functions and the classes. They
generally don’t contain the implementation of the functions. By including
the correct header files, other part of the code can be made readily aware
of the functions without knowing the code of the function.

Code files (.cc or .cpp)

They contain the actual implementation of the functions.
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Memory in C++

For a C++ program, the memory of a computer is like a succession of
memory cells, each one byte in size, and each with a unique address.
These single-byte memory cells are ordered in a way that allows data
representations larger than one byte to occupy memory cells that have
consecutive addresses.

When a variable is declared, the memory needed to store its value is
assigned a specific location in memory (its memory address).

This way, each cell can be easily located in the memory by means of its
unique address. For example, the memory cell with the address 1776
always follows immediately after the cell with address 1775 and precedes
the one with 1777, and is exactly one thousand cells after 776 and exactly
one thousand cells before 2776.
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Pointers

In C++, a pointer is a variable that stores the memory address of another
variable. Pointers are used to store the addresses of memory locations that
are used to store values of variables.
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Pointers - Example

#include <iostream>

int main()

{

// Declare a variable

int x = 10;

// Print the value of x

std::cout << "x = " << x << std::endl;

// Print the memory address of x using the address-of operator (&)

std::cout << "&x = " << &x << std::endl;

// Print the value stored in the address using the dereference operator (*)

std::cout << "*(&x) = " << *(&x) << std::endl;

// Declare a pointer variable that stores the memory address of x as its value

int* ptr = &x;

// Print the value stored in the memory address pointed to by ptr

std::cout << "*ptr = " << *ptr << std::endl;

// Print the memory address stored in ptr

std::cout << "ptr = " << ptr << std::endl;

return 0;

}
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Pointers - Example
In this example, x is a variable of type int that stores the value 10. ptr is a
pointer variable that stores the memory address of x. The & operator is
used to get the memory address of x, and the * operator is used to get the
value stored in the memory address pointed to by ptr.
Pointers are useful because they allow you to modify the value of a
variable indirectly, through the memory address. They are also used to
dynamically allocate memory at runtime, and to pass large amounts of
data to functions more efficiently.

#include <iostream>

int main()

{

// Change value of a variable through a pointer

int x = 10;

int* ptr = &x;

std::cout << "Value of x: " << x << std::endl;

std::cout << "Value of ptr: " << *ptr << std::endl;

*ptr = 6;

std::cout << "Value of x: " << x << std::endl;

std::cout << "Value of ptr: " << *ptr << std::endl;

return 0;

}
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Pointers - Arrays
Pointers are useful for many things (which we will see during the class).
One basic usage of them is in the declaration of arrays:

int main () {

double p[5];

p[0]=23;

p[1]=38;

p[2]=56;

p[3]=69;

p[4]=74;

}

return 0
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Pointers - Arrays

The size of arrays can also be set dynamically using new

int main () {

double* p;

int n=5;

p = new double[n];

p[0]=23;

p[1]=38;

p[2]=56;

p[3]=69;

p[4]=74;

}

return 0
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More conviently - Vectors

An alternative is to see the vector class (we will discuss classes in the next
course)

#include <vector>

int main ()

{

std::vector p;

int n=5;

p.resize(n);

p[0]=23;

p[1]=38;

p[2]=56;

p[3]=69;

p[4]=74;

}

return 0
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In Conclusion

Complex

C++ is a very complex programming language. However, it is used in the
quasi totality of scientific computing software (alongisde Fortran)

Our usage of it will be minimal

C++ has a large breadth. We will use a small part of it. Remember to
look online and/or ask questions when there are things you don’t
understand. There are many available resources online. If you find one that
is interesting, tell me and I will share it with others on the Moodle website.
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