
Specialized Numerical Methods
for Transport Phenomena

Advanced C++ Programming

Bruno Blais and Laura Prieto Saavedra

Department of Chemical Engineering
Polytechnique Montréal

January 16, 2025



Outline

Function overloading

Function templates

Function parameters

Objects

STL Library

Iterators

Conclusion

GCH8108E Advanced C++ 2 / 32



Outline

Function overloading

Function templates

Function parameters

Objects

STL Library

Iterators

Conclusion

GCH8108E Advanced C++ 3 / 32



Common scenario

We need a function that calculates the sum of two integers:

int add_numbers(int a, int b)

{

return a + b;

}

This works fine... but what if we want to have a function that also adds
two doubles?

double add_numbers_double(double a, double b)

{

return a + b;

}

Basically the same function with different name and parameter types. In a
big code this quickly becomes hard to handle!

GCH8108E Advanced C++ 4 / 32



Common scenario

We need a function that calculates the sum of two integers:

int add_numbers(int a, int b)

{

return a + b;

}

This works fine... but what if we want to have a function that also adds
two doubles?

double add_numbers_double(double a, double b)

{

return a + b;

}

Basically the same function with different name and parameter types. In a
big code this quickly becomes hard to handle!

GCH8108E Advanced C++ 4 / 32



What is the solution?
In C++, function overloading allows us to create multiple functions with
the same name with different parameter types:

int add_numbers(int a, int b)

{

return a + b;

}

double add_numbers(double a, double b)

{

return a + b;

}

The compiler will be able to differentiate these functions as follows:

add_numbers(1, 2); // will call 1st version

add_numbers(2.1, 4.3); // will call 2nd version

GCH8108E Advanced C++ 5 / 32



How does the compiler differentiate?

• Based on types of parameters (as in the previous example)

• Based on the number of parameters:

int add_numbers(int a, int b)

{

return a + b;

}

int add_numbers(int a, int b, int c)

{

return a + b + c;

}

Note: the return type of the function is not considered when
differentiating overloaded functions.

GCH8108E Advanced C++ 6 / 32



Outline

Function overloading

Function templates

Function parameters

Objects

STL Library

Iterators

Conclusion

GCH8108E Advanced C++ 7 / 32



When do we need this?

We can use function overloading for the following example:

int add_numbers(int a, int b)

{

return a + b;

}

double add_numbers(double a, double b)

{

return a + b;

}

However, note that the implementation is exactly the same for both
versions! And in fact, it could be used also for other types, e.g., long or
long double. This is again hard to maintain and a source of common errors
in big codes.

Can we write a single version of add numbers that works
with any type?

GCH8108E Advanced C++ 8 / 32



When do we need this?

We can use function overloading for the following example:

int add_numbers(int a, int b)

{

return a + b;

}

double add_numbers(double a, double b)

{

return a + b;

}

However, note that the implementation is exactly the same for both
versions! And in fact, it could be used also for other types, e.g., long or
long double. This is again hard to maintain and a source of common errors
in big codes. Can we write a single version of add numbers that works
with any type?

GCH8108E Advanced C++ 8 / 32



What is a template?

In C++ templates were created to simplify the process of working with
different data types. We can simply create a single template of a function,
using a “placeholder” type, also known as, template type T:

template <typename T> // template parameter declaration

T add_numbers(T a, T b)

{

return a + b;

}

Once the template is defined, the compiler can use it to generate as many
overloaded functions as needed. The result is the same as a bunch of
overloaded functions but easier to create and mantain.

GCH8108E Advanced C++ 9 / 32



Usage

In C++
Templates are used extensively in many C++ containers (vector, lists,
maps, etc.)

In deal.II
Templates will be used to parametrize the dimensionality of the problem,
among many other things!

GCH8108E Advanced C++ 10 / 32



Outline

Function overloading

Function templates

Function parameters

Objects

STL Library

Iterators

Conclusion

GCH8108E Advanced C++ 11 / 32



What is a parameter?

In the function declaration we have parameters, e.g., a and b:

int add_numbers(int a, int b)

{

return a + b;

}

On the other hand, when we call the function we have arguments that are
being passed to the function:

int x = 2, y = 3;

add_numbers(x, y);

How does this work? Through a process called passing by value where all
the parameters are created as variables, and the value of each argument is
copied into the matching parameter → copying makes things slow for
complicated types...

GCH8108E Advanced C++ 12 / 32



What is a parameter?

In the function declaration we have parameters, e.g., a and b:

int add_numbers(int a, int b)

{

return a + b;

}

On the other hand, when we call the function we have arguments that are
being passed to the function:

int x = 2, y = 3;

add_numbers(x, y);

How does this work? Through a process called passing by value where all
the parameters are created as variables, and the value of each argument is
copied into the matching parameter → copying makes things slow for
complicated types...

GCH8108E Advanced C++ 12 / 32



Passing by reference
We can do better by using pointers and their addresses, since this avoids
copying the argument:

int add_numbers(int& a, int& b)

{

return a + b;

}

If we call the function:

int x = 2, y = 3;

add_numbers(x, y);

Now, when the function uses a and b, it is in fact accessing the actual
arguments x and y. This has no cost and no copy of the arguments needs
to be made.
Note: this means that if you change a and b inside the function, now the
changes will affect the actual variables x and y. Unless you use const.

GCH8108E Advanced C++ 13 / 32



Outline

Function overloading

Function templates

Function parameters

Objects

STL Library

Iterators

Conclusion

GCH8108E Advanced C++ 14 / 32



Object-Oriented Programming

Until now we have seen how to define variables and functions.
If you look objects around you, e..g., books, buildings, etc, there are two
major components:

• Attributes: weight, color, size, etc.

• Behaviors: open, close, etc.

The idea of OOP is to create program-defined data types that comprise
both attributes (variables) and behaviors (functions). These types are
called objects and a program can have one or several of them, and they
can communicate with each other by sending messages.
The main benefits of OOP are:

• It allows for the creation of reusable code.

• It promotes code organization and modularity.

• It makes it easier to maintain and modify code over time.

GCH8108E Advanced C++ 15 / 32



Object-Oriented Programming

Until now we have seen how to define variables and functions.
If you look objects around you, e..g., books, buildings, etc, there are two
major components:

• Attributes: weight, color, size, etc.

• Behaviors: open, close, etc.

The idea of OOP is to create program-defined data types that comprise
both attributes (variables) and behaviors (functions). These types are
called objects and a program can have one or several of them, and they
can communicate with each other by sending messages.
The main benefits of OOP are:

• It allows for the creation of reusable code.

• It promotes code organization and modularity.

• It makes it easier to maintain and modify code over time.

GCH8108E Advanced C++ 15 / 32



How to define a class?

class Student

{

public:

Student(int ID)// Constructor

{

id = ID;

std::cout << "Student being constructed" << std::endl;

}

// Member functions

void printID()

{

std::cout << id << std::endl;

}

private:

// Member variables

int id;

};

We could add more variables such as age or program of study, and we
could add more functions to print the different information.

GCH8108E Advanced C++ 16 / 32



How to use these objects?

In the main function, we can then create different students as follows:

int main()

{

Student student_1(11030);

student_1.printID();

Student student_2(11031);

student_2.printID();

return 0;

}

At runtime the object is instantiated, the memory is allocated, and the
constructor is called.

GCH8108E Advanced C++ 17 / 32



Templated classes
For example, we can have a Number class:

template <class T>

class Number

{

public:

Number(T n) : num(n) {} // constructor

T getNum() {

return num;

}

private:

T num;

};

Then we can create objects as follows:

Number<int> numberInt(7);

Number<double> numberDouble(7.7);

GCH8108E Advanced C++ 18 / 32



Why OOP for scientific software?

Many things we will use in scientific computing are well represented by
objects. Notably, when using the finite element method:

• A mesh

• Degrees of freedom

• Quadratures

• Matrices

• Linear solvers

• and so on and so forth...

GCH8108E Advanced C++ 19 / 32



Don’t be scared...

You do not need to master OOP to succeed in this class. Objects will be
introduced step by step. You will see that they will actually make our life
significantly easier when we start manipulating complex concept.

Ask questions whenever you have hesitations. We know this stuff, we will
be glad to explain everything you need. Remember, we will also follow
your pace.

GCH8108E Advanced C++ 20 / 32



Don’t be scared...

You do not need to master OOP to succeed in this class. Objects will be
introduced step by step. You will see that they will actually make our life
significantly easier when we start manipulating complex concept.

Ask questions whenever you have hesitations. We know this stuff, we will
be glad to explain everything you need. Remember, we will also follow
your pace.

GCH8108E Advanced C++ 20 / 32



Outline

Function overloading

Function templates

Function parameters

Objects

STL Library

Iterators

Conclusion

GCH8108E Advanced C++ 21 / 32



The Standard Library

When you code you probably notice that we reuse the same concepts over
and over again: loops, arrays, strings, etc. Therefore, C++ comes with a
library that is full of reusable classes.
It contains a collection of classes that provide templated containers,
algorithms and iterators.
Advantages:

• You do not have to write everything from scratch.

• Reusing classes allows you to avoid errors and long hours of
debugging.

• These are well documented classes.

Disadvantages:

• The library is big and complex, you need to have a basic idea of
templates.

The only way of getting used to the library is by using it!

GCH8108E Advanced C++ 22 / 32



STL containers

There are three categories:

• Sequence containers: maintain the ordering of the elements and you
can choose where to insert your element by position, e.g.,
std::array, std::vector, std::list.

• Associative containers: automatically sort their inputs, e.g.,
std::set, std::map.

• Container adapters: adapted to specific uses, e.g., std::stack,
queue.

GCH8108E Advanced C++ 23 / 32



STL iterators

Objects that can iterate over a container class without having to know
how the container is implemented. They are better visualized as a pointer
to a given element in the container. Each container will have four basic
functions:

• begin(): returns an iterator representing the beginning of the
elements in the container

• end(): returns an iterator representing the element just past the end
of the elements

• cbegin(): const (read-only) iterator

• cend(): const (read-only) iterator

GCH8108E Advanced C++ 24 / 32



STL algorithms

Generic algorithms for working with the elements of the container classes,
for example, they allow you to:

• Search

• Sort

• Insert

• Reorder

• Remove

• Copy elements

Note: they are implemented using iterators and they are supposed to work
with all containers.

GCH8108E Advanced C++ 25 / 32



Outline

Function overloading

Function templates

Function parameters

Objects

STL Library

Iterators

Conclusion

GCH8108E Advanced C++ 26 / 32



Why do we need them?

Iterating over an array (or any other structure) of data is very useful and
common when programming. We could use loops and an index (for and
while loops), however:

• this is not concise

• it works only if the container (e.g., the array) provides direct
accessing to elements

Another way of iterating through a container is to use range-based
for-loops, which work for different structures:

• Arrays

• Lists

• Trees

• Maps

• ...

GCH8108E Advanced C++ 27 / 32



How does it work?
An iterator is an object designed to traverse through a container. The
simplest kind of iterator is a pointer, which works for data stored
sequentially.

#include <array>

#include <iostream>

int main()

{

std::array new_array<int,3> {1, 2, 3};

int* begin = &new_array[0];

int* end = begin + new_array.size();

std::cout << "new_array contains:";

ffor (int* it = begin; it != end; ++it)

std::cout << " " << *it;

std::cout << std::endl;

return 0;

}

GCH8108E Advanced C++ 28 / 32



If the pointers are already defined...

For example std::array provides the functions begin() and end() and
they can be used as follows:

#include <array>

#include <iostream>

int main()

{

std::array new_array<int,3> {1, 2, 3};

std::cout << "new_array contains:";

for (auto it = new_array.begin(); it != new_array.end();

++it )

std::cout << " " << *it;

std::cout << std::endl;

return 0;

}

GCH8108E Advanced C++ 29 / 32



It can be even simpler...

#include <array>

#include <iostream>

int main()

{

std::array<int,3> new_array{ 1, 2, 3 };

std::cout << "new_array contains:";

for (int i : array)

std::cout << " " << i;

std::cout << std::endl;

return 0;

}

Behind the scenes, the range-based for-loop calls begin() and end().
Iterators are broadly use in deal.II, therefore, it is important for you to
know this concept.

GCH8108E Advanced C++ 30 / 32



Outline

Function overloading

Function templates

Function parameters

Objects

STL Library

Iterators

Conclusion

GCH8108E Advanced C++ 31 / 32



In Conclusion

C++
You have now learned all the basics and some advanced concepts on C++.

Our usage of it will be minimal

You need to be able to understand these concepts to use the deal.II

library. However, most of the “hard work” is hidden for us. You will get
used to the syntax with practice and time. After all, the only way of
learning how to code is to do it yourself! Of course, while having fun with
it!

GCH8108E Advanced C++ 32 / 32


	Function overloading
	Function templates
	Function parameters
	Objects
	STL Library
	Iterators
	Conclusion

